Propagation of discontinuities against a static background


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The solution of the ideal gasdynamic equations describing propagation of a shock wave initiated, for example, by the motion of a piston against an inhomogeneous static background is considered. The solution is constructed in the form of Taylor series in a special time variable which is equal to zero on the shock wave. In the case of weak shock waves divergence of the series serves as the constraint for such an approach. Then the solution is constructed by linearizing the equations about the solution with a weak discontinuity. In the case of a given background the last solution can be always found exactly by solving successively a set of transport equations, all these equations are reduced to linear ordinary differential equations. The presentation begins from the one-dimensional solutions with plane waves and ends by discussion of spatial problems.

Авторлар туралы

A. Golubyatnikov

Faculty of Mechanics and Mathematics

Хат алмасуға жауапты Автор.
Email: golubiat@mail.ru
Ресей, Leninskiye Gory 1, Moscow, 119991

S. Kovalevskaya

Faculty of Mechanics and Mathematics

Email: golubiat@mail.ru
Ресей, Leninskiye Gory 1, Moscow, 119991

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017