


Vol 52, No 2 (2017)
- Year: 2017
- Articles: 16
- URL: https://journals.rcsi.science/0015-4628/issue/view/9409
Article
Three-ion model of EHD flows in the “wire-over-plane” electrode system
Abstract
The results of numerical simulation of the complete system of electrohydrodynamic equations are presented for a dielectric liquid containing three kinds of ions, namely, two kinds arising owing to impurity molecule dissociation and the third kind arising owing to appearance of ions from liquid molecules with the electron-donor properties in near-electrode reactions. An analysis of the simulation results shows that a small jet of injected ions rapidly recombines with counterions under the conditions of weak injection; therefore, the jet of space charge differs significantly from the injected ion jet. This difference disappears under the conditions of strong injection. The flow structure is in the close correspondence with the results revealed experimentally.



Effect of surface electric current on the electrohydrodynamic flow inside and outside a spherical drop
Abstract
The problem of electrohydrodynamic flow of a viscous, low-conducting, polarizable liquid inside and outside a spherical drop in an applied homogeneous constant electric field is analytically solved with account for the effect of both surface conduction current and surface convection current. The influence of the drop deformation on the field and the flow is neglected. The solution is obtained in the form of asymptotic expansions in a small parameter corresponding to weak surface convection electric currents.



Stability of two-layer fluid flows with evaporation at the interface
Abstract
The problem of stability of two-layer (fluid-gas) flows with account of evaporation at the thermocapillary interface is studied under the condition of a fixed gas flow rate. In the upper gas-vapor layer, the Dufour effect is taken into account. A novel exact solution of the Navier–Stokes equations in the Boussinesq approximation is constructed. The effects of longitudinal temperature gradients, gravity, thicknesses of the gas and fluid layers, and the gas flow rate on the flow structure, the onset of recirculated flows near the interface, the evaporation rate, and the properties of characteristic disturbances are investigated.



Energy-optimal time-dependent regimes of viscous incompressible fluid flow
Abstract
The hydrodynamic equations of a viscous incompressible fluid are modified for axisymmetric flows in a pipe of time-varying radius. A new exact time-dependent solution of these equations which generalizes the well-known classic steady-state Hagen–Poiseuille solution for flow in a pipe of constant radius (independent of time) is obtained. It is shown that the law of time variation in the pipe radius can be determined from the condition of the minimum work done to pump a given fluid volume through such a pipe during the radius variation cycle period. A generalization of the optimal branching pipeline in which, instead of the Poiseuille law, its modification based on the use of the exact solution corresponding to the time-dependent M-shaped regime is employed is suggested. It is shown that the hydraulic resistance can be reduced over a certain range of the parameters of the time-dependent flow regime as compared with the steady-state pipe flow regime. The conclusion obtained can be used for the development of the hydrodynamic basis for simulating the optimal hydrodynamic blood flow regime.



Three-dimensional viscous jet flow with plane free boundaries
Abstract
The problem of steady three-dimensional viscous flow with plane free boundaries, induced by a linear source or sink, is solved. The nonuniqueness of the solution in the case of a source and its vanishing in the case of a sink, as the Reynolds number reaches a certain critical value, is proved. The problem is investigated within the framework of the known class of the exact solutions of Navier–Stokes equations generalized in this study.



Vibrations of an ice sheet with crack under a time-periodic load
Abstract
The analytic solution of the problem of vibrations of an ice sheet with a rectilinear crack floating on the surface of an ideal incompressible fluid of shallow depth under the action of a local zone of the time-periodic pressure is obtained. The ice sheet is simulated by two thin viscoelastic semiinfinite plates of different thickness. Various conditions on the crack edges are considered. Far field asymptotics are investigated and it is revealed that the predominant directions of wave propagation at an angle to the crack can be distinguished in the far field in the case of contact of two plates of different thickness. In the case of contact of identical plates, a waveguide mode propagating along the crack is excited. It is shown that the waveguide mode is the same for the plates with the free edges and the free overlap since the part of the solution symmetric about the crack is the same while the difference between the solutions is caused by the antisymmetric part of the solution.



Standing surface waves in a rectangular tank with local wall and bottom irregularities
Abstract
The results of laboratory experiments on the estimation of the effect of wall and bottom geometry on the frequency, height, and decay rate of standing surface waves in a tank oscillating in the vertical direction are presented. The effect of one or two semi-cylindrical inserts mounted on the face and rear walls of the tank is considered in detail for the cases of a horizontal bottom and a linear shallow on the bottom. The experimental data are interpreted using a mathematical longwave model based on the method of accelerated convergence.



Numerical and experimental investigation of the means for reducing the aeroacoustic loads in an extended rectangular cavity at subsonic and transonic freestream velocities
Abstract
The results of a comprehensive investigation including numerical calculations and experiments with models in a wind tunnel and a vehicle under flight conditions aiming to find the ways of reducing the pressure fluctuation levels in an extended cavity at subsonic and transonic freestream velocities are presented. It is shown that the reduction of these loads can be achieved using the means which have demonstrated their effectiveness for cavities with the open-type flows, for example, a permeable deflector and the bevelling of the rear wall but only in the case of a given combination of their geometric parameters. The mechanisms of the action of these devices on the flow, thanks to which the intensity of the wave disturbances generated by the rear wall is reduced, the instability wave growth in the mixing layer behind the deflector is limited, and the fluctuation level in the cavity decreases, are investigated. The results of numerical investigations of the flow in a cavity with a permeable deflector are apparently among the first.



Instability of a liquid layer under periodic influence: Falling film in an alternating electric field
Abstract
The linear analysis of stability of a plane-parallel time-periodic flow is carried out. The numerical method which makes it possible to reduce the spectral problem for the time-dependent Orr–Sommerfeld equation to an algebraic eigenvalue problem is used. The film of viscous conducting liquid which flows down a vertical wall in the normal electric field is considered and parametric resonances are revealed.



Excitation of controllable perturbations in the three-dimensional boundary layer using plasma actuators
Abstract
Two versions of the structure of a multi-discharge plasma actuator intended to excite boundary layer perturbations in the neighborhood of the leading swept-wing edge are suggested. The actuator must prevent from appearance and development of the crossflow instability modes leading to laminarturbulent transition under the normal conditions. In the case of flow past a swept wing, excitation of controllable perturbations by the plasma actuator is simulated numerically in the steady-state approximation under the typical conditions of cruising flight of a subsonic aircraft. The local body force and thermal impact on the boundary layer flow which is periodic along the leading wing edge is considered. The calculations are carried out for the physical impact parameters realizable in the near-surface dielectric barrier discharge.



Application of the method of near-wall boundary conditions to an investigation of turbulent flows with longitudinal pressure gradients
Abstract
The dynamic and thermal characteristics of steady near-wall boundary layers in flow deceleration regions are studied on the basis of differential turbulencemodels. The method of transferring the boundary conditions from the wall into the flow is tested for flows with variable longitudinal pressure gradients. Using differential turbulence models in the transition and low-Reynolds-number regions near surfaces the effect of the parameters of highly turbulent free stream on the development of dynamic processes in the developed turbulent boundary layer in the flow deceleration region is studied. The calculated profiles of the velocity, the kinetic energy of turbulence, the friction and thermal conductivity coefficients, and the temperature factor are compared with the experimental data in the cases in which the boundary conditions are preassigned both on the wall and in the flow. The effect of an intermediate boundary condition on the results of the calculations is analyzed.



Turbulent flow structure and bubble distribution in an axisymmetric nonisothermal impinging gas-liquid jet
Abstract
The flow structure of a bubbly impinging jet in the presence of heat transfer between the two-phase flow and the surface is numerically investigated on the basis of the Eulerian approach. The model uses the system of Reynolds-averaged Navier–Stokes equations in the axisymmetric approximation written with account for the inverse effect of the bubbles on the average and fluctuating flow parameters. The influence of the gas volumetric flow rate ratio and the dimensions of the bubbles on the flow structure in a gas-liquid impinging jet is studied, In the presence of gas bubbles the liquid velocity is higher than the corresponding value in the single-phase flow. A considerable, more than twofold, anisotropy between the axial and radial turbulent fluctuations in the gas-liquid impinging jet is shown to exist. An addition of air bubbles leads to a considerable growth in the liquid velocity fluctuations in the two-phase flow (up to 50% compared with the single-fluid liquid impinging jet). An increase in the disperse phase dimensions leads to intensification of turbulence of the liquid.



Mathematical model of deep-bed filtration of a two-component suspension through a porous medium
Abstract
A model of deep-bed filtration of a two-component suspension through a porous medium with formation of two types of the deposit which have different structures and properties is constructed. The influence of the parameters of fluid and particle flux densities which determine mass transfer between different components of the suspension and deposits on the filtration characteristics and properties of the resulting deposits is estimated on the basis of numerical experiments for the suspensions with contrast particle fractions.



Hydrodynamics of a submerging drop: Lined structures on the crown surface
Abstract
Macrophotography and high-speed videofilming are used to investigate the material transfer in a falling drop upon collision with the surface of a fluid at rest. In the experiments the drops of colored water, milk, mineral oil, and seed oil fell in pure or colored water. Emphasis was placed on recording the pattern of the drop material spreading over the surface of the receiving fluid. On the continuous surface of the primary cavity and the crown the drop material is concentrated in the form of thin fibers which form a regular streaky or netlike pattern in which triangular, quadrangular, and pentagonal cells are expressed. The cell rows are ordered in the form of layers on the lateral walls and the bottom of the cavity. The fiber dimensions and the degree of their expressiveness vary in the process of flow evolution. The upper row of structures on the crown surface is formed by vertical fibers.



Propagation of discontinuities against a static background
Abstract
The solution of the ideal gasdynamic equations describing propagation of a shock wave initiated, for example, by the motion of a piston against an inhomogeneous static background is considered. The solution is constructed in the form of Taylor series in a special time variable which is equal to zero on the shock wave. In the case of weak shock waves divergence of the series serves as the constraint for such an approach. Then the solution is constructed by linearizing the equations about the solution with a weak discontinuity. In the case of a given background the last solution can be always found exactly by solving successively a set of transport equations, all these equations are reduced to linear ordinary differential equations. The presentation begins from the one-dimensional solutions with plane waves and ends by discussion of spatial problems.



Numerical modeling of transonic buffeting and its control by means of tangential jet blowing
Abstract
Flow past the airfoil of a civil aircraft wing is numerically modeled in the transonic buffeting regimes. The characteristics of unsteady self-oscillations of the shock on the upper surface of the airfoil are studied. To suppress them a technique of controlling the flow is proposed. It consists in blowing a jet tangent to the upper surface of the airfoil from a small-size slot nozzle. The calculations are carried out within the framework of the unsteady Reynolds equations.


