Modification of the Lighting Conditions to Increase Plant Productivity and Nutritional Value: New Solutions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The review summarizes the results of numerous studies aimed at optimizing plant production in closed systems (greenhouses with controlled climate and plant factories with artificial lighting (vertical farms)). The latest pre-harvest or end-of-production light treatments are considered. These include an increase in the lighting duration (up to continuous lighting), an increase in the light intensity, a change in the light quality (different ratios of red, blue, green light, the use of far-red light) or additional illumination with UV light (usually for several days). Unlike the lighting strategies used in the first part of the production cycle and aimed at optimizing the growth, development and biomass accumulation, their application is carried out in order to increase not only yield, but also the nutritional value of products, reduce nitrate content, as well as increase the energy efficiency of production. Some physiological and biochemical mechanisms that are involved in plant response to various light treatments are discussed, and the need to further study the molecular and genetic mechanisms that underlie these responses is emphasized, knowledge of which will accelerate the search and identification of the most effective agricultural practices that increase crop productivity and nutritional value.

Sobre autores

A. Rubaeva

Institute of Biology, Karelian Research Center, Russian Academy of Sciences; Federal Research Center “Karelian Research Centre of the Russian Academy of Sciences”

Email: arubaeva@krc.karelia.ru
Petrozavodsk, Russian Federation

T. Shibaeva

Institute of Biology, Karelian Research Center, Russian Academy of Sciences; Federal Research Center “Karelian Research Centre of the Russian Academy of Sciences”

Petrozavodsk, Russian Federation

A. Titov

Institute of Biology, Karelian Research Center, Russian Academy of Sciences; Federal Research Center “Karelian Research Centre of the Russian Academy of Sciences”

Petrozavodsk, Russian Federation

Bibliografia

  1. Lu C., Grundy S. Urban agriculture and vertical farming // In Elsevier eBooks. 2017. P. 393–402. https://doi.org/10.1016/B978-0-12-409548-9.10184-8
  2. UN. Climate change [Online]. 2024. https://www.un.org/en/globalissues/climate-change
  3. Wang L., Iddio E. Energy performance evaluation and modeling for an indoor farming facility // Sustainable Energy Technologies and Assessments. 2022. V. 52. P. 102240. https://doi.org/10.1016/j.seta.2022.102240
  4. Kyriacou M.C., Ebert A.W., Samuoliene G., Brazatiyte A. Editorial: Sprouts, microgreens and edible flowers: Modulation of quality in functional specialty crops // Front. Plant Sci. 2022. V. 13. https://doi.org/10.3389/fpls.2022.1033236
  5. Zhang X., Bian Z., Yuan X., Chen X., Lu C. A review on the effects of light-emitting diode (LED) light on the nutrients of sprouts and microgreens // Trends Food Sci. Technol. 2020. V. 99. P. 203–216. https://doi.org/10.1016/j.tifs.2020.02.031
  6. De Castro Moura Duarte A.L., Picanco Rodrigues V., Bonome Message Costa L. The sustainability challenges of fresh food supply chains: An integrative framework // Environ. Dev. Sustain. 2024. https://doi.org/10.1007/s10668-024-04850-9
  7. Zhao X., Peng J., Zhang L., Yang X., Qiu Yu., Cai Ch., Hu J., Huang T., Liang Y., Li Z., Tian M., Liu F., Wang Z. Optimizing the quality of horticultural crop: Insights into pre-harvest practices in controlled environment agriculture // Front. Plant Sci. 2024. V. 15:1427471. https://doi.org/10.3389/fpls.2024.1427471
  8. Joyce D.C. The quality cycle. In Crop management and postharvest handling of horticultural products; Dris R., Niskanen R., Jain S.M., Ed.; Science Publishers, Inc.: Plymouth, UK. 2001. V. 1. P. 1–11.
  9. Secretaria L.B., Hoffman E., Bekker M., Joyce D.A. Contemporary review of preharvest mineral nutrient management and defense elicitor treatments for robust fresh produce // Horticulturae. 2025. V. 11. P. 596. https://doi.org/10.3390/horticulturae11060596
  10. Abaajeh A.R., Kingston C.E., Harty M. Environmental factors influencing the growth and pathogenicity of microgreens bound for the market: a review // Renewable Agriculture and Food Systems. 2023. V. 38. P. e12. https://doi.org/10.1017/S174217052300008X
  11. Petropoulos S.A., El-Nakhel C., Graziani G., Kyriacou M.C., Rouphael Y. The effects of nutrient solution feeding regime on yield, mineral profile, and phytochemical composition of spinach microgreens // Horticulturae. 2021. V. 7. P. 162. https://doi.org/10.3390/horticulturae7070162
  12. Шибаева Т.Г., Титов А.Ф. Всегда ли фотопериодический стресс вреден? // Труды Карельского научного центра РАН. Серия экспериментальная биология. 2025. № 3. С. 5–22. https://doi.org/10.17076/eb2098
  13. Wu W., Chen L., Liang R., Huang S., Li X., Huang B., Luo H., Zhang M., Wang X., Zhu H. The role of light in regulating plant growth, development and sugar metabolism: a review // Front. Plant Sci. 2025. V. 15:1507628. https://doi.org/10.3389/fpls.2024.1507628
  14. Roeber V.M., Schmilling T., Cortleven A. The photoperiod: handling and causing stress in plants // Front. Plant Sci. 2022. V. 12:781988. https://doi.org/10.3389/fpls.2021.781988
  15. Sysoeva M.I., Markovskaya E.F., Shibaeva T.G. Plants under continuous light: a review // Plant Stress. 2010. V. 4. P. 5.
  16. Velez-Ramirez A.I., Van Ieperen W., Vreugdenhil D., Millenaar F.F. Plants under continuous light // Trends Plant Sci. 2011. V. 16. P. 310. https://doi.org/10.1016/j.tplants.2011.02.003
  17. Proietti S., Moscatello S., Riccio F., Downey P., Battistelli A. Continuous lighting promotes plant growth, light conversion efficiency, and nutritional quality of Eruca vesicaria (L.) Cav. in controlled environment with minor effects due to light quality // Front. Plant Sci. 2021. V. 12. P. 730119. https://doi.org/10.3389/fpls.2021.730119
  18. Lanoue J., St Louis S., Little C., Hao X. Continuous lighting can improve yield and reduce energy costs while increasing or maintaining nutritional contents of microgreens // Front. Plant Sci. 2022. V. 13. P. 983222. https://doi.org/10.3389/fpls.2022.983222
  19. Shibaeva T.G., Mamaev A.V., Titov A.F. Possible physiological mechanisms of leaf photodamage in plants grown under continuous lighting // Russ. J. Plant Physiol. 2023a. V. 70:15. https://doi.org/10.1134/S1021443722602646
  20. Shibaeva T.G., Titov A.F. Photoperiod stress in plants: a new look at plant response to abnormal light-dark cycles // Russ. J. Plant Physiol. 2025a. V. 72. № 4. https://doi.org/10.1134/S1021443722602646
  21. Shibaeva T.G., Sherudilo E.G., Rubaeva A.A., Titov A.F. Continuous LED lighting enhances yield and nutritional value of four genotypes of Brassicaceae microgreens // Plants. 2022. V. 11. P. 1. https://doi.org/10.3390/plants11020176
  22. Bian Z.-H., Cheng R.-F., Yang Q.-C., Wang J. Continuous light from red, blue, and green light-emitting diodes reduces nitrate content and enhances phytochemical concentrations and antioxidant capacity in lettuce // J. Amer. Soc. Hort. Sci. 2016. V. 141. P. 186. https://doi.org/10.21273/JASHS.141.2.186
  23. Bian Z., Cheng R., Wang Y., Yang Q., Lu C. Effect of green light on nitrate reduction and edible quality of hydroponically grown lettuce (Lactuca sativa L.) under short-term continuous light from red and blue light-emitting diodes // Environ. Exp. Bot. 2018. V. 153. P. 63–71. https://doi.org/10.1016/j.envexpbot.2018.05.010
  24. Liu W., Zha L., Zhang Y. Growth and nutrient element content of hydroponic lettuce are modified by LED continuous lighting of different intensities and spectral qualities // Agronomy. 2020. V. 10. № . 11. https://doi.org/10.3390/agronomy10111678
  25. Shibaeva T.G., Rubaeva A.A., Sherudilo E.G., Titov A.F. Continuous lighting increases yield and nutritional value and decreases nitrate content in Brassicaceae microgreens // Russ. J. Plant Physiol. 2023b. V. 70. P. 118. https://doi.org/10.1134/S1021443723601337
  26. Liu J., Liu W. Regulation of accumulation and metabolism circadian rhythms of starch and sucrose in two leaf-color lettuces by red: blue ratios of LED continuous light // Environ. Exp. Bot. 2022. V. 196. P. 104811. https://doi.org/10.1016/j.envexpbot.2022.104811
  27. Zhou W.L., Liu W.K., Yang Q.C. Quality changes in hydroponic lettuce grown under pre-harvest short-duration continuous light of different intensities // J. Hort. Sci. Biotech. 2012. V. 87. P. 429–434. https://doi.org/10.1080/14620316.2012.11512890
  28. Deng M., Qian H., Chen L., Sun B., Chang J., Miao H., Cai C., Wang Q. Influence of pre-harvest red light irradiation on main phytochemicals and antioxidant activity of Chinese kale sprouts // Food Chemistry. 2017. V. 222. P. 1–5. ISSN 0308-8146
  29. Zhang Y., Zha L., Liu W., Zhou C., Shao M., Yang Q. LED light quality of continuous light before harvest affects growth and AsA metabolism of hydroponic lettuce grown under increasing doses of nitrogen // Plants. 2021. V. 10:176. https://doi.org/10.3390/plants10010176
  30. Hooks T., Sun L., Kong Y., Masabni J., Niu G. Short-term pre-harvest supplemental lighting with different light emitting diodes improves greenhouse lettuce quality // Horticulturae. 2022. V. 8. P. 435. https://doi.org/10.3390/horticulturae8050435
  31. Yang X., Gil M.I., Yang Q., Tomas-Barberan F.A. Bioactive compounds in lettuce: Highlighting the benefits to human health and impacts of preharvest and postharvest practices // Compr. Rev. Food Sci. Food Saf. 2021. V. 21. P. 4–45. https://doi.org/10.1111/1541-4337.12877
  32. Shibaeva T.G., Sherudilo E.G., Rubaeva A.A., Titov A.F. Effect of end-of-production continuous lighting on yield and nutritional value of Brassicaceae microgreens // BIO Web of Conferences. 2022. V. 48. P. 02005. https://doi.org/10.1051/bioconf/20224802005
  33. Shibaeva T.G., Rubaeva A.A., Sherudilo E.G., Titov A.F. Changing the photoperiod at the end of the production cycle allows to increase the productivity and nutritional value of rapini microgreens // Russ. J. Plant Physiol. 2025. V. 72. № 3. https://doi.org/10.1134/S1021443724609686
  34. Shen W., Zhang W., Li J., Huang Z., Tao Y., Hong J., Zhang L., Zhou Y. Pre-harvest short-term continuous LED lighting improves the nutritional quality and flavor of hydroponic purple-leaf lettuce // Sci. Hortic. 2024. V. 334:113304. https://doi.org/10.1016/j.scienta.2024.113304
  35. Rubaeva A.A., Sherudilo E.G., Ikkonen E.N., Titov A.F., Shibaeva T.G. Effect of pre-harvest continuous lighting on yield, nutritional quality and energy efficiency in indoor production of pea shoots // AIP Conference Proceedings. 2024. V. 3184. № . 1. P. 20046. https://doi.org/10.1063/5.0212331
  36. Zha L., Zhang Y., Liu W. Dynamic responses of ascorbate pool and metabolism in lettuce to long-term continuous light provided by red and blue LEDs // Environ. Exp. Bot. 2019. V. 163. P. 15–23. https://doi.org/10.1016/j.envexpbot.2019.04.003
  37. Rubaeva A.A., Sherudilo E.G., Shibaeva T.G. LED continuous lighting reduces nitrate content in Brassicaceae microgreens // E3S Web of Conferences. 2023. V. 411:01068. https://doi.org/10.1051/e3sconf/202341101068
  38. Zhou W., Wenke L., Qichang Y. Reducing nitrate content in lettuce by pre-harvest continuous light delivered by red and blue light-emitting diodes // J. Plant Nutr. 2013. V. 36. P. 481. http://dx.doi.org/10.1080/01904167.2012.748069
  39. Zhou W.L., Liu W.K., Yang Q.C. Quality changes in hydroponic lettuce grown under pre-harvest short-duration continuous light of different intensities // J. Hort. Sci. Biotech. 2012. V. 87. P. 429. https://doi.org/10.1080/14620316.2012.11512890
  40. Osterlund M.T., Hardtke C.S., Wei N., Deng X.W. Targeted destabilization of HYS during light-regulated development of Arabidopsis // Nature. 2000. V. 405. P. 462–466. https://doi.org/10.1038/35013076
  41. Jonassen E.M., Sandsmark B.A., Lillo C. Unique status of NIA2 in nitrate assimilation: NIA2 expression is promoted by HYS/HYH and inhibited by PIF4 // Plant Signaling Behav. 2009. V. 4. P. 1084–1086. https://doi.org/10.4161/psb.4.11.9795
  42. Cheng C.-L., Acedo G.N., Christinsin M., Conkling M.A. Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription // Proc. Natl. Acad. Sci. USA. 1992. V. 89. P. 1861–1864. https://doi.org/10.1073/pnas.89.5.1861
  43. Chadwick M., Gawthrop F., Michelmore R.W., Wagstaff C., Methven L. Perception of bitterness, sweetness and liking of different genotypes of lettuce // Food Chemistry. 2016. V. 197. P. 66–74. https://doi.org/10.1016/j.foodchem.2015.10.105
  44. Kumar D., Singh H., Bhatt U., Soni V. Effect of continuous light on antioxidant activity, lipid peroxidation, proline and chlorophyll content in Vigna radiata L. // Funct. Plant Biol. 2022. V. 49. P. 145. https://doi.org/10.1071/FP21226
  45. Fan X.-X., Xue F., Song B., Chen L.-Z., Xu G., Xu H. Effects of blue and red light on growth and metabolism in pakchoi // Open Chem. 2019. V. 17. P. 456. https://doi.org/10.1515/chem-2019-0038
  46. Paradiso R., Proietti S. Light-quality manipulation to control plant growth and photomorphogenesis in greenhouse horticulture: the state of the art and the opportunities of modern led systems // J. Plant Growth Regul. 2021. V. 21. P. 1. https://doi.org/10.1007/s00344-021-10337-y
  47. Airifai O., Hao X., Liu R., Lu Z., Marcone M.F., Tsao R. Amber, red and blue LEDs modulate phenolic contents and antioxidant activities in eight cruciferous microgreens // J. Food Bioact. 2020. V. 11. P. 95. https://doi.org/10.31665/jfb.2020.11241
  48. Gomez C., Jimenez J. Effect of end-of-production high energy radiation on nutritional quality of indoor-grown red-leaf Lettuce // Hort. Sci. 2020. V. 55. P. 1–6. https://doi.org/10.21273/HORTSCI15030-20
  49. Dougher T.A.O., Bugbee B. Long-term blue light effects on the histology of lettuce and soybean leaves and stems // J. Amer. Soc. Hort. Sci. 2004. V. 129. P. 467–472. https://doi.org/10.21273/JASHS.129.4.0467
  50. Wargent J.J., Moore J.P., Roland Ennos A., Paul N.D. Ultraviolet radiation as a limiting factor in leaf expansion and development // Photochem. Photobiol. 2009. V. 85. P. 279–286. https://doi.org/10.1111/j.1751-1097.2008.00433.x
  51. Murchie E.H., Niyogi K.K. Manipulation of photoprotection to improve plant photosynthesis // Plant. Physiol. 2011. V. 155. P. 86–92. https://doi.org/10.1104/pp.110.168831
  52. Samuoliene G., Urbonaviciute A., Duchovskis P., Bliznikas Z., Vitta P., Zukauskas A. Decrease in nitrate concentration in leafy vegetable under a solid-state illuminator // Hort. Sci. 2009. V. 44. P. 1857–1860. https://doi.org/10.21273/HORTSCI.44.7.1857
  53. Oh M.M., Carey E.E., Rajashekar B. Environmental stresses induce health-promoting phytochemicals in lettuce // Plant Physiol. Biochem. 2009. V. 47. P. 578–583. https://doi.org/10.1016/j.plaphy.2009.02.008
  54. Woltering E.J., Witkowska I.M. Effects of pre- and postharvest lighting on quality and shelf life of fresh-cut lettuce // Acta Hort. 2016. V. 1134. P. 357–365. https://doi.org/10.17660/ActaHortic.2016.1134.47
  55. Min Q., Marcells L.F.M., Nicole C.C.S., Woltering E.J. High light intensity applied shortly before harvest improves lettuce nutritional quality and extends the shelf life // Front. Plant Sci. 2021. V. 12. https://doi.org/10.3389/fpls.2021.615355
  56. Larsen D.H., Li H., van de Peppel A.C., Nicole C.C., Marcells L.F., Woltering E.J. High light intensity at end-of-production improves the nutritional value of basil but does not affect postharvest chilling tolerance // Food Chem. 2022. V. 369. P. 130913. https://doi.org/10.1016/j.foodchem.2021.130913
  57. Ciriello M., Carillo P., Lentini M., Rouphael Y. Influence of pre-harvest factors on the storage of fresh basil (Ocimum basilicum L.): a review // Horticulturae. 2025. V. 11. P. 326. https://doi.org/10.3390/horticulturae11030326
  58. Demotes-Mainard S., Péron T., Corot A., Bertheloot J., Le Gourriere J., Pelleschi-Travier S., Crespel L., Morel P., Huché-Thélier L., Boumaza R., Vian A., Guérin V., Leduc N., Sakr S. Plant responses to red and far-red lights, applications in horticulture // Environ. Exp. Bot. 2016. V. 121. P. 4–21. https://doi.org/10.1016/j.envexpbot.2015.05.010
  59. Huché-Thélier L., Crespel L., Gourriere J.L., Morel P., Sakr S., Leduc N. Light signaling and plant responses to blue and UV radiations-Perspectives for applications in horticulture // Environ. Exp. Bot. 2016. V. 121. P. 22–38. https://doi.org/10.1016/j.envexpbot.2015.06.009
  60. Długosz-Grochowska O., Wojciechowska R., Kruczek M., Habela A. Supplemental lighting with LEDs improves the biochemical composition of two Valerianella locusta (L.) cultivars // Horticulture Environment Biotechnol. 2017. V. 58. P. 441–449. https://doi.org/10.1007/s13580-017-0300-4
  61. Palmitessa O.D., Paciello P., Santamaria P. Supplemental LED increases tomato yield in mediterranean semi-closed greenhouse // Agronomy. 2020. V. 10. P. 1353. https://doi.org/10.3390/agronomy10091353
  62. Yap E.S.P., Uthairatanakij A., Laohakunji N., Jitareerat P., Vaswani A., Magana A.A., Morre J., Maier C.S. Plant growth and metabolic changes in ‘Super Hot’ chili fruit (Capsicum annuum) exposed to supplemental LED lights // Plant Sci. 2021. V. 305. P. 110826. https://doi.org/10.1016/j.plantsci.2021.110826
  63. Tang Z., Wu Y., Xiao X., Zhang G., Hu L., Liu Z., Lyu J., Yu J. Red and blue LED light supplementation in the morning pre-activates the photosynthetic system of tomato (Solanum lycopersicum L.) leaves and promotes plant growth // Agronomy. 2022. V. 12. P. 897. https://doi.org/10.3390/agronomy12040897
  64. Wojciechowska R., Długosz-Grochowska O., Kolton A., Żupnik M. Effects of LED supplemental lighting on yield and some quality parameters of lamb's lettuce grown in two winter cycles // Scientia Hortic. 2015. V. 187. P. 80–86. https://doi.org/10.1016/j.scienta.2015.03.006
  65. Li Y., Xin G., Wei M., Shi Q., Yang F., Wang X. Carbohydrate accumulation and sucrose metabolism responses in tomato seedling leaves when subjected to different light qualities // Scientia Hortic. 2017b. V. 225. P. 490–497. https://doi.org/10.1016/j.scienta.2017.07.053
  66. Zheng Y.J., Zhang Y.T., Liu H.C., Li Y.M., Liu Y.L., Hao Y.W., Lei B.F. Supplemental blue light increases growth and quality of greenhouse pak choi depending on cultivar and supplemental light intensity // J. Integr. Agric. 2018. V. 17. P. 2245–2256. https://doi.org/10.1016/S2095-3119(18)62064-7
  67. Li Q., Kubota C. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce // Environ. Exp. Bot. 2009. V. 67. P. 59–64. https://doi.org/10.1016/j.envexpbot.2009.06.011
  68. Begum F.U., Skinner G., Smieszek S.P., Budge S., Stead A.D., Devlin P.F. Improved chilling tolerance in glasshouse-grown potted sweet basil by end-of-production, short-duration supplementary far red light // Front. Plant Sci. 2023. V. 14. https://doi.org/10.3389/fpls.2023.1239010
  69. Yan Z., He D., Niu G., Zhou Q., Qu Y. Growth, nutritional quality, and energy use efficiency of hydroponic lettuce as influenced by daily light integrals exposed to white versus white plus red light-emitting diodes // Hort. Sci. 2019. V. 54. P. 1737. https://doi.org/10.21273/HORTSCI14236-19
  70. Kim D., Ra I., Son J.E. Fruit quality and volatile compounds of greenhouse sweet peppers as affected by the LED spectrum of supplementary interlighting // J. Sci. Food Agric. 2023. V. 103. P. 2593–2601. https://doi.org/10.1002/jsfa.12439
  71. Verdaguer D., Jansen M.A., Llorens L., Morales L.O., Neugart S. UV-A radiation effects on higher plants: Exploring the known unknown // Plant Sci. 2017. V. 255. P. 72–81. https://doi.org/10.1016/j.plantsci.2016.11.014
  72. Johnson G.A., Day T.A. Enhancement of photosynthesis in Sorghum bicolor by ultraviolet radiation // Physiologia Plantarum. 2002. V. 116. P. 554–562. https://doi.org/10.1034/j.1399-3054.2002.1160415.x
  73. Hernandez V., Botella M.A., Hellin P., Cava J., Fenoll J., Mestre T., Martinez V., Flores P. Phenolic and carotenoid profile of lamb's lettuce and improvement of the bioactive content by preharvest conditions // Foods. 2021. V. 10. P. 188. https://doi.org/10.3390/foods10010188
  74. Mariz-Ponte N., Martins S., Gonçalves A., Correia C.M., Ribeiro C., Dias M.C., Santos C. The potential use of the UV-A and UV-B to improve tomato quality and preference for consumers // Scientia Hortic. 2019. V. 246. P. 777–784. https://doi.org/10.1016/j.scienta.2018.11.058
  75. Hooks T., Masabni J., Sun L., Niu G. Effect of pre-harvest supplemental UV-A/Blue and Red/Blue LED lighting on lettuce growth and nutritional quality // Horticulturae. 2021. V. 7. P. 80. https://doi.org/10.3390/horticulturae7040080
  76. Lee M., Kim J., Oh M.-M., Lee J.-H., Rajashekar C.B. Effects of supplemental UV-A LEDs on the nutritional quality of lettuce: accumulation of protein and other essential nutrients // Horticulturae. 2022. V. 8. P. 680. https://doi.org/10.3390/horticulturae8080680
  77. Jeon Y.-M., Son K.-H., Kim S.-M., Oh M.-M. Growth of dropwort plants and their accumulation of bioactive compounds after exposure to UV lamp or LED irradiation // Horticulture Environment Biotechnol. 2018. V. 59. P. 659–670. https://doi.org/10.1007/s13580-018-0076-1
  78. Neugart S., Schreiner M. UVB and UVA as eustressors in horticultural and agricultural crops // Scientia Hortic. 2018. V. 234. P. 370–381. https://doi.org/10.1016/j.scienta.2018.02.021
  79. Mannucci A., Mariotti L., Castagna A., Santin M., Trivellini A., Reyes T.H., Mensuali-Sodi A., Ranieri A., Quartacci M.F. Hormone profile changes occur in roots and leaves of Micro-Tom tomato plants when exposing the aerial part to low doses of UV-B radiation // Plant Physiol. Biochem. 2020. V. 148. P. 291–301. https://doi.org/10.1016/j.plaphy.2020.01.030
  80. Assumpcao C.F., Assis R.Q., Hermes Poletto V.S., Castagna A., Ranieri A., Neugart S., Flores S.H., Rios A.O. Application of supplemental UV-B radiation in pre-harvest to enhance health-promoting compounds accumulation in green and red lettuce // J. Food Process. Preservation. 2019. V. 43. P. e14213. https://doi.org/10.1111/jfpp.14213
  81. Giuntini D., Graziani G., Lercari B., Fogliano V., Soldatini G.F., Ranieri A. Changes in carotenoid and ascorbic acid contents in fruits of different tomato genotypes related to the depletion of UV-B radiation // J. Agric. Food Chem. 2005. V. 53. P. 3174–3181. https://doi.org/10.1021/jf0401726
  82. Dzakovich M.P., Ferruzzi M.G., Mitchell C.A. Manipulating sensory and phytochemical profiles of greenhouse tomatoes using environmentally relevant doses of ultraviolet radiation // J. Agric. Food Chem. 2016. V. 64. P. 6801–6808. https://doi.org/10.1021/acs.jafc.6b02983
  83. Lu Y., Dong W., Yang T., Luo Y., Chen P. Preharvest UVB application increases glucosinolate contents and enhances postharvest quality of broccoli microgreens // Molecules. 2021. V. 26. P. 3247. https://doi.org/10.3390/molecules26113247
  84. Ali A., Franzoni G., Petrini A., Santoro P., Mori J., Ferrante A., Cocetta G. Investigating physiological responses of wild rocket subjected to artificial Ultraviolet B irradiation // Scientia Hortic. 2023. V. 322. P. 112415. https://doi.org/10.1016/j.scienta.2023.112415
  85. Li T., Yamane H., Tao R. Preharvest long-term exposure to UV-B radiation promotes fruit ripening and modifies stage-specific anthocyanin metabolism in highbush blueberry // Horticulture Res. 2021. V. 8. P. 67. https://doi.org/10.1038/s41438-021-00503-4
  86. Scott G., Dickinson M., Shama G. Preharvest high-intensity, pulsed polychromatic light and low-intensity UV-C treatments control Botrytis cinerea on lettuce (Lactuca sativa) // Eur. J. Plant Pathol. 2021. V. 159. P. 449–454. https://doi.org/10.1007/s10658-020-02157-9
  87. Urban L., Charles F., de Miranda M.R.A., Aarrouf J. Understanding the physiological effects of UV-C light and exploiting its agronomic potential before and after harvest // Plant Physiol. Biochem. 2016. V. 105. P. 1–11. https://doi.org/10.1016/j.plaphy.2016.04.004
  88. Vasquez H., Ouhibi C., Lizzi Y., Azzouz N., Forges M., Bardin M., Bardin M., Nicot P.C., Urban L., Aarrouf J. Pre-harvest hormetic doses of UV-C radiation can decrease susceptibility of lettuce leaves (Lactuca sativa L.) to Botrytis cinerea L. // Scientia Hortic. 2017. V. 222. P. 32–39. https://doi.org/10.1016/j.scienta.2017.04.017
  89. Martinez-Sánchez A., Lozano-Pastor P., Artés-Hernández F., Artés F., Aguayo E. Preharvest UV-C treatment improves the quality of spinach primary production and postharvest storage // Postharvest Biol. Technol. 2019. V. 155. P. 130–139. https://doi.org/10.1016/j.postharvbio.2019.05.021
  90. Jin P., Wang H., Zhang Y., Huang Y., Wang L., Zheng Y. UV-C enhances resistance against gray mold decay caused by Botrytis cinerea in strawberry fruit // Scientia Hortic. 2017. V. 225. P. 106–111. https://doi.org/10.1016/j.scienta.2017.06.062
  91. Pinto E.P., Perin E.C., Schott I.B., da Silva Rodrigues R., Lucchetta L., Manfroi V., Rombaldi C.V. The effect of postharvest application of UV-C radiation on the phenolic compounds of conventional and organic grapes (Vitis labrusca cv. “Concord”) // Postharvest Biol. Technol. 2016. V. 120. P. 84–91. https://doi.org/10.1016/j.postharvbio.2016.05.015
  92. Zhou D., Sun Y., Li M., Zhu T., Tu K. Postharvest hot air and UV-C treatments enhance aroma-related volatiles by simulating the lipoxygenase pathway in peaches during cold storage // Food Chem. 2019. V. 292. P. 294–303. https://doi.org/10.1016/j.foodchem.2019.04.049
  93. Jansen M.A.K. Ultraviolet-B radiation effects on plants: induction of morphogenic responses // Physiologia Plantarum. 2002. V. 116. P. 423–429. https://doi.org/10.1034/j.1399-3054.2002.1160319.x
  94. Nawkar G.M., Maibam P., Park J.H., Sahi V.P., Lee S.Y., Kang C.H. UV-induced cell death in plants // Int. J. Mol. Sci. 2013. V. 14. P. 1608–1628. https://doi.org/10.3390/ijms14011608
  95. Lee M.J., Son J.E., Oh M.M. Growth and phenolic compounds of Lactuca sativa L. grown in a closed-type plant production system with UV-A, -B, or –Clamp // J. Sci. Food Agric. 2014. V. 94. P. 197–204. https://doi.org/10.1002/jsfa.6227
  96. Simonsen S., Thyssen J.P., Heegaard S., Kezic S., Skov L. Expression of filaggrin and its degradation products in human skin following erythematous doses of ultraviolet B irradiation // Acta Dermato Venereologica. 2017. V. 97. P. 797–801. https://doi.org/10.2340/00015555-2662
  97. Yi Y., Xie H., Xiao X., Wang B., Du R., Liu Y., Li Z., Wang J., Sun L., Deng Z., Li J. Ultraviolet A irradiation induces senescence in human dermal fibroblasts by down-regulating DNMT1 via ZEB1 // Aging (Albany NY). 2018. V. 10. P. 212–228. https://doi.org/10.18632/aging.v10i2
  98. Dickinson S.E., Khawam M., Kirschnerova V., Vaishampayan P., Centuori S.M., Saboda K., Calvert V.S., Petricoin E.F. III, Curiel-Lewandrowski C. Increased PD-L1 expression in human skin acutely and chronically exposed to UV irradiation // Photochem. Photobiol. 2021. V. 97. P. 778–784. https://doi.org/10.1111/php.13406
  99. Yang Y., Huang Z., Wu Y., Wu W., Lyu L., Li W. Effects of nitrogen application level on the physiological characteristics, yield and fruit quality of blackberry // Sci. Hortic. 2023. V. 313. P. 111915. https://doi.org/10.1016/j.scienta.2023.111915

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».