Modification of the Lighting Conditions to Increase Plant Productivity and Nutritional Value: New Solutions
- Authors: Rubaeva A.A1,2, Shibaeva T.G1,2, Titov A.F1,2
-
Affiliations:
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences
- Federal Research Center “Karelian Research Centre of the Russian Academy of Sciences”
- Issue: Vol 72, No 2 (2025)
- Pages: 135–153
- Section: ОБЗОР
- URL: https://journals.rcsi.science/0015-3303/article/view/357572
- DOI: https://doi.org/10.7868/S3034624X25020057
- ID: 357572
Cite item
Abstract
About the authors
A. A Rubaeva
Institute of Biology, Karelian Research Center, Russian Academy of Sciences; Federal Research Center “Karelian Research Centre of the Russian Academy of Sciences”
Email: arubaeva@krc.karelia.ru
Petrozavodsk, Russian Federation
T. G Shibaeva
Institute of Biology, Karelian Research Center, Russian Academy of Sciences; Federal Research Center “Karelian Research Centre of the Russian Academy of Sciences”Petrozavodsk, Russian Federation
A. F Titov
Institute of Biology, Karelian Research Center, Russian Academy of Sciences; Federal Research Center “Karelian Research Centre of the Russian Academy of Sciences”Petrozavodsk, Russian Federation
References
- Lu C., Grundy S. Urban agriculture and vertical farming // In Elsevier eBooks. 2017. P. 393–402. https://doi.org/10.1016/B978-0-12-409548-9.10184-8
- UN. Climate change [Online]. 2024. https://www.un.org/en/globalissues/climate-change
- Wang L., Iddio E. Energy performance evaluation and modeling for an indoor farming facility // Sustainable Energy Technologies and Assessments. 2022. V. 52. P. 102240. https://doi.org/10.1016/j.seta.2022.102240
- Kyriacou M.C., Ebert A.W., Samuoliene G., Brazatiyte A. Editorial: Sprouts, microgreens and edible flowers: Modulation of quality in functional specialty crops // Front. Plant Sci. 2022. V. 13. https://doi.org/10.3389/fpls.2022.1033236
- Zhang X., Bian Z., Yuan X., Chen X., Lu C. A review on the effects of light-emitting diode (LED) light on the nutrients of sprouts and microgreens // Trends Food Sci. Technol. 2020. V. 99. P. 203–216. https://doi.org/10.1016/j.tifs.2020.02.031
- De Castro Moura Duarte A.L., Picanco Rodrigues V., Bonome Message Costa L. The sustainability challenges of fresh food supply chains: An integrative framework // Environ. Dev. Sustain. 2024. https://doi.org/10.1007/s10668-024-04850-9
- Zhao X., Peng J., Zhang L., Yang X., Qiu Yu., Cai Ch., Hu J., Huang T., Liang Y., Li Z., Tian M., Liu F., Wang Z. Optimizing the quality of horticultural crop: Insights into pre-harvest practices in controlled environment agriculture // Front. Plant Sci. 2024. V. 15:1427471. https://doi.org/10.3389/fpls.2024.1427471
- Joyce D.C. The quality cycle. In Crop management and postharvest handling of horticultural products; Dris R., Niskanen R., Jain S.M., Ed.; Science Publishers, Inc.: Plymouth, UK. 2001. V. 1. P. 1–11.
- Secretaria L.B., Hoffman E., Bekker M., Joyce D.A. Contemporary review of preharvest mineral nutrient management and defense elicitor treatments for robust fresh produce // Horticulturae. 2025. V. 11. P. 596. https://doi.org/10.3390/horticulturae11060596
- Abaajeh A.R., Kingston C.E., Harty M. Environmental factors influencing the growth and pathogenicity of microgreens bound for the market: a review // Renewable Agriculture and Food Systems. 2023. V. 38. P. e12. https://doi.org/10.1017/S174217052300008X
- Petropoulos S.A., El-Nakhel C., Graziani G., Kyriacou M.C., Rouphael Y. The effects of nutrient solution feeding regime on yield, mineral profile, and phytochemical composition of spinach microgreens // Horticulturae. 2021. V. 7. P. 162. https://doi.org/10.3390/horticulturae7070162
- Shibaeva T.G., Titov A.F. Is photoperiodic stress always harmful? Transactions of Karelian Research Center of Russian Academy of Science. Experimental Biology Series. 2025. V. 3. P. 5–22. https://doi.org/10.17076/eb2098
- Wu W., Chen L., Liang R., Huang S., Li X., Huang B., Luo H., Zhang M., Wang X., Zhu H. The role of light in regulating plant growth, development and sugar metabolism: a review // Front. Plant Sci. 2025. V. 15:1507628. https://doi.org/10.3389/fpls.2024.1507628
- Roeber V.M., Schmilling T., Cortleven A. The photoperiod: handling and causing stress in plants // Front. Plant Sci. 2022. V. 12:781988. https://doi.org/10.3389/fpls.2021.781988
- Sysoeva M.I., Markovskaya E.F., Shibaeva T.G. Plants under continuous light: a review // Plant Stress. 2010. V. 4. P. 5.
- Velez-Ramirez A.I., Van Ieperen W., Vreugdenhil D., Millenaar F.F. Plants under continuous light // Trends Plant Sci. 2011. V. 16. P. 310. https://doi.org/10.1016/j.tplants.2011.02.003
- Proietti S., Moscatello S., Riccio F., Downey P., Battistelli A. Continuous lighting promotes plant growth, light conversion efficiency, and nutritional quality of Eruca vesicaria (L.) Cav. in controlled environment with minor effects due to light quality // Front. Plant Sci. 2021. V. 12. P. 730119. https://doi.org/10.3389/fpls.2021.730119
- Lanoue J., St Louis S., Little C., Hao X. Continuous lighting can improve yield and reduce energy costs while increasing or maintaining nutritional contents of microgreens // Front. Plant Sci. 2022. V. 13. P. 983222. https://doi.org/10.3389/fpls.2022.983222
- Shibaeva T.G., Mamaev A.V., Titov A.F. Possible physiological mechanisms of leaf photodamage in plants grown under continuous lighting // Russ. J. Plant Physiol. 2023a. V. 70:15. https://doi.org/10.1134/S1021443722602646
- Shibaeva T.G., Titov A.F. Photoperiod stress in plants: a new look at plant response to abnormal light-dark cycles // Russ. J. Plant Physiol. 2025a. V. 72. № 4. https://doi.org/10.1134/S1021443722602646
- Shibaeva T.G., Sherudilo E.G., Rubaeva A.A., Titov A.F. Continuous LED lighting enhances yield and nutritional value of four genotypes of Brassicaceae microgreens // Plants. 2022. V. 11. P. 1. https://doi.org/10.3390/plants11020176
- Bian Z.-H., Cheng R.-F., Yang Q.-C., Wang J. Continuous light from red, blue, and green light-emitting diodes reduces nitrate content and enhances phytochemical concentrations and antioxidant capacity in lettuce // J. Amer. Soc. Hort. Sci. 2016. V. 141. P. 186. https://doi.org/10.21273/JASHS.141.2.186
- Bian Z., Cheng R., Wang Y., Yang Q., Lu C. Effect of green light on nitrate reduction and edible quality of hydroponically grown lettuce (Lactuca sativa L.) under short-term continuous light from red and blue light-emitting diodes // Environ. Exp. Bot. 2018. V. 153. P. 63–71. https://doi.org/10.1016/j.envexpbot.2018.05.010
- Liu W., Zha L., Zhang Y. Growth and nutrient element content of hydroponic lettuce are modified by LED continuous lighting of different intensities and spectral qualities // Agronomy. 2020. V. 10. № . 11. https://doi.org/10.3390/agronomy10111678
- Shibaeva T.G., Rubaeva A.A., Sherudilo E.G., Titov A.F. Continuous lighting increases yield and nutritional value and decreases nitrate content in Brassicaceae microgreens // Russ. J. Plant Physiol. 2023b. V. 70. P. 118. https://doi.org/10.1134/S1021443723601337
- Liu J., Liu W. Regulation of accumulation and metabolism circadian rhythms of starch and sucrose in two leaf-color lettuces by red: blue ratios of LED continuous light // Environ. Exp. Bot. 2022. V. 196. P. 104811. https://doi.org/10.1016/j.envexpbot.2022.104811
- Zhou W.L., Liu W.K., Yang Q.C. Quality changes in hydroponic lettuce grown under pre-harvest short-duration continuous light of different intensities // J. Hort. Sci. Biotech. 2012. V. 87. P. 429–434. https://doi.org/10.1080/14620316.2012.11512890
- Deng M., Qian H., Chen L., Sun B., Chang J., Miao H., Cai C., Wang Q. Influence of pre-harvest red light irradiation on main phytochemicals and antioxidant activity of Chinese kale sprouts // Food Chemistry. 2017. V. 222. P. 1–5. ISSN 0308-8146
- Zhang Y., Zha L., Liu W., Zhou C., Shao M., Yang Q. LED light quality of continuous light before harvest affects growth and AsA metabolism of hydroponic lettuce grown under increasing doses of nitrogen // Plants. 2021. V. 10:176. https://doi.org/10.3390/plants10010176
- Hooks T., Sun L., Kong Y., Masabni J., Niu G. Short-term pre-harvest supplemental lighting with different light emitting diodes improves greenhouse lettuce quality // Horticulturae. 2022. V. 8. P. 435. https://doi.org/10.3390/horticulturae8050435
- Yang X., Gil M.I., Yang Q., Tomas-Barberan F.A. Bioactive compounds in lettuce: Highlighting the benefits to human health and impacts of preharvest and postharvest practices // Compr. Rev. Food Sci. Food Saf. 2021. V. 21. P. 4–45. https://doi.org/10.1111/1541-4337.12877
- Shibaeva T.G., Sherudilo E.G., Rubaeva A.A., Titov A.F. Effect of end-of-production continuous lighting on yield and nutritional value of Brassicaceae microgreens // BIO Web of Conferences. 2022. V. 48. P. 02005. https://doi.org/10.1051/bioconf/20224802005
- Shibaeva T.G., Rubaeva A.A., Sherudilo E.G., Titov A.F. Changing the photoperiod at the end of the production cycle allows to increase the productivity and nutritional value of rapini microgreens // Russ. J. Plant Physiol. 2025. V. 72. № 3. https://doi.org/10.1134/S1021443724609686
- Shen W., Zhang W., Li J., Huang Z., Tao Y., Hong J., Zhang L., Zhou Y. Pre-harvest short-term continuous LED lighting improves the nutritional quality and flavor of hydroponic purple-leaf lettuce // Sci. Hortic. 2024. V. 334:113304. https://doi.org/10.1016/j.scienta.2024.113304
- Rubaeva A.A., Sherudilo E.G., Ikkonen E.N., Titov A.F., Shibaeva T.G. Effect of pre-harvest continuous lighting on yield, nutritional quality and energy efficiency in indoor production of pea shoots // AIP Conference Proceedings. 2024. V. 3184. № . 1. P. 20046. https://doi.org/10.1063/5.0212331
- Zha L., Zhang Y., Liu W. Dynamic responses of ascorbate pool and metabolism in lettuce to long-term continuous light provided by red and blue LEDs // Environ. Exp. Bot. 2019. V. 163. P. 15–23. https://doi.org/10.1016/j.envexpbot.2019.04.003
- Rubaeva A.A., Sherudilo E.G., Shibaeva T.G. LED continuous lighting reduces nitrate content in Brassicaceae microgreens // E3S Web of Conferences. 2023. V. 411:01068. https://doi.org/10.1051/e3sconf/202341101068
- Zhou W., Wenke L., Qichang Y. Reducing nitrate content in lettuce by pre-harvest continuous light delivered by red and blue light-emitting diodes // J. Plant Nutr. 2013. V. 36. P. 481. http://dx.doi.org/10.1080/01904167.2012.748069
- Zhou W.L., Liu W.K., Yang Q.C. Quality changes in hydroponic lettuce grown under pre-harvest short-duration continuous light of different intensities // J. Hort. Sci. Biotech. 2012. V. 87. P. 429. https://doi.org/10.1080/14620316.2012.11512890
- Osterlund M.T., Hardtke C.S., Wei N., Deng X.W. Targeted destabilization of HYS during light-regulated development of Arabidopsis // Nature. 2000. V. 405. P. 462–466. https://doi.org/10.1038/35013076
- Jonassen E.M., Sandsmark B.A., Lillo C. Unique status of NIA2 in nitrate assimilation: NIA2 expression is promoted by HYS/HYH and inhibited by PIF4 // Plant Signaling Behav. 2009. V. 4. P. 1084–1086. https://doi.org/10.4161/psb.4.11.9795
- Cheng C.-L., Acedo G.N., Christinsin M., Conkling M.A. Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription // Proc. Natl. Acad. Sci. USA. 1992. V. 89. P. 1861–1864. https://doi.org/10.1073/pnas.89.5.1861
- Chadwick M., Gawthrop F., Michelmore R.W., Wagstaff C., Methven L. Perception of bitterness, sweetness and liking of different genotypes of lettuce // Food Chemistry. 2016. V. 197. P. 66–74. https://doi.org/10.1016/j.foodchem.2015.10.105
- Kumar D., Singh H., Bhatt U., Soni V. Effect of continuous light on antioxidant activity, lipid peroxidation, proline and chlorophyll content in Vigna radiata L. // Funct. Plant Biol. 2022. V. 49. P. 145. https://doi.org/10.1071/FP21226
- Fan X.-X., Xue F., Song B., Chen L.-Z., Xu G., Xu H. Effects of blue and red light on growth and metabolism in pakchoi // Open Chem. 2019. V. 17. P. 456. https://doi.org/10.1515/chem-2019-0038
- Paradiso R., Proietti S. Light-quality manipulation to control plant growth and photomorphogenesis in greenhouse horticulture: the state of the art and the opportunities of modern led systems // J. Plant Growth Regul. 2021. V. 21. P. 1. https://doi.org/10.1007/s00344-021-10337-y
- Airifai O., Hao X., Liu R., Lu Z., Marcone M.F., Tsao R. Amber, red and blue LEDs modulate phenolic contents and antioxidant activities in eight cruciferous microgreens // J. Food Bioact. 2020. V. 11. P. 95. https://doi.org/10.31665/jfb.2020.11241
- Gomez C., Jimenez J. Effect of end-of-production high energy radiation on nutritional quality of indoor-grown red-leaf Lettuce // Hort. Sci. 2020. V. 55. P. 1–6. https://doi.org/10.21273/HORTSCI15030-20
- Dougher T.A.O., Bugbee B. Long-term blue light effects on the histology of lettuce and soybean leaves and stems // J. Amer. Soc. Hort. Sci. 2004. V. 129. P. 467–472. https://doi.org/10.21273/JASHS.129.4.0467
- Wargent J.J., Moore J.P., Roland Ennos A., Paul N.D. Ultraviolet radiation as a limiting factor in leaf expansion and development // Photochem. Photobiol. 2009. V. 85. P. 279–286. https://doi.org/10.1111/j.1751-1097.2008.00433.x
- Murchie E.H., Niyogi K.K. Manipulation of photoprotection to improve plant photosynthesis // Plant. Physiol. 2011. V. 155. P. 86–92. https://doi.org/10.1104/pp.110.168831
- Samuoliene G., Urbonaviciute A., Duchovskis P., Bliznikas Z., Vitta P., Zukauskas A. Decrease in nitrate concentration in leafy vegetable under a solid-state illuminator // Hort. Sci. 2009. V. 44. P. 1857–1860. https://doi.org/10.21273/HORTSCI.44.7.1857
- Oh M.M., Carey E.E., Rajashekar B. Environmental stresses induce health-promoting phytochemicals in lettuce // Plant Physiol. Biochem. 2009. V. 47. P. 578–583. https://doi.org/10.1016/j.plaphy.2009.02.008
- Woltering E.J., Witkowska I.M. Effects of pre- and postharvest lighting on quality and shelf life of fresh-cut lettuce // Acta Hort. 2016. V. 1134. P. 357–365. https://doi.org/10.17660/ActaHortic.2016.1134.47
- Min Q., Marcells L.F.M., Nicole C.C.S., Woltering E.J. High light intensity applied shortly before harvest improves lettuce nutritional quality and extends the shelf life // Front. Plant Sci. 2021. V. 12. https://doi.org/10.3389/fpls.2021.615355
- Larsen D.H., Li H., van de Peppel A.C., Nicole C.C., Marcells L.F., Woltering E.J. High light intensity at end-of-production improves the nutritional value of basil but does not affect postharvest chilling tolerance // Food Chem. 2022. V. 369. P. 130913. https://doi.org/10.1016/j.foodchem.2021.130913
- Ciriello M., Carillo P., Lentini M., Rouphael Y. Influence of pre-harvest factors on the storage of fresh basil (Ocimum basilicum L.): a review // Horticulturae. 2025. V. 11. P. 326. https://doi.org/10.3390/horticulturae11030326
- Demotes-Mainard S., Péron T., Corot A., Bertheloot J., Le Gourriere J., Pelleschi-Travier S., Crespel L., Morel P., Huché-Thélier L., Boumaza R., Vian A., Guérin V., Leduc N., Sakr S. Plant responses to red and far-red lights, applications in horticulture // Environ. Exp. Bot. 2016. V. 121. P. 4–21. https://doi.org/10.1016/j.envexpbot.2015.05.010
- Huché-Thélier L., Crespel L., Gourriere J.L., Morel P., Sakr S., Leduc N. Light signaling and plant responses to blue and UV radiations-Perspectives for applications in horticulture // Environ. Exp. Bot. 2016. V. 121. P. 22–38. https://doi.org/10.1016/j.envexpbot.2015.06.009
- Długosz-Grochowska O., Wojciechowska R., Kruczek M., Habela A. Supplemental lighting with LEDs improves the biochemical composition of two Valerianella locusta (L.) cultivars // Horticulture Environment Biotechnol. 2017. V. 58. P. 441–449. https://doi.org/10.1007/s13580-017-0300-4
- Palmitessa O.D., Paciello P., Santamaria P. Supplemental LED increases tomato yield in mediterranean semi-closed greenhouse // Agronomy. 2020. V. 10. P. 1353. https://doi.org/10.3390/agronomy10091353
- Yap E.S.P., Uthairatanakij A., Laohakunji N., Jitareerat P., Vaswani A., Magana A.A., Morre J., Maier C.S. Plant growth and metabolic changes in ‘Super Hot’ chili fruit (Capsicum annuum) exposed to supplemental LED lights // Plant Sci. 2021. V. 305. P. 110826. https://doi.org/10.1016/j.plantsci.2021.110826
- Tang Z., Wu Y., Xiao X., Zhang G., Hu L., Liu Z., Lyu J., Yu J. Red and blue LED light supplementation in the morning pre-activates the photosynthetic system of tomato (Solanum lycopersicum L.) leaves and promotes plant growth // Agronomy. 2022. V. 12. P. 897. https://doi.org/10.3390/agronomy12040897
- Wojciechowska R., Długosz-Grochowska O., Kolton A., Żupnik M. Effects of LED supplemental lighting on yield and some quality parameters of lamb's lettuce grown in two winter cycles // Scientia Hortic. 2015. V. 187. P. 80–86. https://doi.org/10.1016/j.scienta.2015.03.006
- Li Y., Xin G., Wei M., Shi Q., Yang F., Wang X. Carbohydrate accumulation and sucrose metabolism responses in tomato seedling leaves when subjected to different light qualities // Scientia Hortic. 2017b. V. 225. P. 490–497. https://doi.org/10.1016/j.scienta.2017.07.053
- Zheng Y.J., Zhang Y.T., Liu H.C., Li Y.M., Liu Y.L., Hao Y.W., Lei B.F. Supplemental blue light increases growth and quality of greenhouse pak choi depending on cultivar and supplemental light intensity // J. Integr. Agric. 2018. V. 17. P. 2245–2256. https://doi.org/10.1016/S2095-3119(18)62064-7
- Li Q., Kubota C. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce // Environ. Exp. Bot. 2009. V. 67. P. 59–64. https://doi.org/10.1016/j.envexpbot.2009.06.011
- Begum F.U., Skinner G., Smieszek S.P., Budge S., Stead A.D., Devlin P.F. Improved chilling tolerance in glasshouse-grown potted sweet basil by end-of-production, short-duration supplementary far red light // Front. Plant Sci. 2023. V. 14. https://doi.org/10.3389/fpls.2023.1239010
- Yan Z., He D., Niu G., Zhou Q., Qu Y. Growth, nutritional quality, and energy use efficiency of hydroponic lettuce as influenced by daily light integrals exposed to white versus white plus red light-emitting diodes // Hort. Sci. 2019. V. 54. P. 1737. https://doi.org/10.21273/HORTSCI14236-19
- Kim D., Ra I., Son J.E. Fruit quality and volatile compounds of greenhouse sweet peppers as affected by the LED spectrum of supplementary interlighting // J. Sci. Food Agric. 2023. V. 103. P. 2593–2601. https://doi.org/10.1002/jsfa.12439
- Verdaguer D., Jansen M.A., Llorens L., Morales L.O., Neugart S. UV-A radiation effects on higher plants: Exploring the known unknown // Plant Sci. 2017. V. 255. P. 72–81. https://doi.org/10.1016/j.plantsci.2016.11.014
- Johnson G.A., Day T.A. Enhancement of photosynthesis in Sorghum bicolor by ultraviolet radiation // Physiologia Plantarum. 2002. V. 116. P. 554–562. https://doi.org/10.1034/j.1399-3054.2002.1160415.x
- Hernandez V., Botella M.A., Hellin P., Cava J., Fenoll J., Mestre T., Martinez V., Flores P. Phenolic and carotenoid profile of lamb's lettuce and improvement of the bioactive content by preharvest conditions // Foods. 2021. V. 10. P. 188. https://doi.org/10.3390/foods10010188
- Mariz-Ponte N., Martins S., Gonçalves A., Correia C.M., Ribeiro C., Dias M.C., Santos C. The potential use of the UV-A and UV-B to improve tomato quality and preference for consumers // Scientia Hortic. 2019. V. 246. P. 777–784. https://doi.org/10.1016/j.scienta.2018.11.058
- Hooks T., Masabni J., Sun L., Niu G. Effect of pre-harvest supplemental UV-A/Blue and Red/Blue LED lighting on lettuce growth and nutritional quality // Horticulturae. 2021. V. 7. P. 80. https://doi.org/10.3390/horticulturae7040080
- Lee M., Kim J., Oh M.-M., Lee J.-H., Rajashekar C.B. Effects of supplemental UV-A LEDs on the nutritional quality of lettuce: accumulation of protein and other essential nutrients // Horticulturae. 2022. V. 8. P. 680. https://doi.org/10.3390/horticulturae8080680
- Jeon Y.-M., Son K.-H., Kim S.-M., Oh M.-M. Growth of dropwort plants and their accumulation of bioactive compounds after exposure to UV lamp or LED irradiation // Horticulture Environment Biotechnol. 2018. V. 59. P. 659–670. https://doi.org/10.1007/s13580-018-0076-1
- Neugart S., Schreiner M. UVB and UVA as eustressors in horticultural and agricultural crops // Scientia Hortic. 2018. V. 234. P. 370–381. https://doi.org/10.1016/j.scienta.2018.02.021
- Mannucci A., Mariotti L., Castagna A., Santin M., Trivellini A., Reyes T.H., Mensuali-Sodi A., Ranieri A., Quartacci M.F. Hormone profile changes occur in roots and leaves of Micro-Tom tomato plants when exposing the aerial part to low doses of UV-B radiation // Plant Physiol. Biochem. 2020. V. 148. P. 291–301. https://doi.org/10.1016/j.plaphy.2020.01.030
- Assumpcao C.F., Assis R.Q., Hermes Poletto V.S., Castagna A., Ranieri A., Neugart S., Flores S.H., Rios A.O. Application of supplemental UV-B radiation in pre-harvest to enhance health-promoting compounds accumulation in green and red lettuce // J. Food Process. Preservation. 2019. V. 43. P. e14213. https://doi.org/10.1111/jfpp.14213
- Giuntini D., Graziani G., Lercari B., Fogliano V., Soldatini G.F., Ranieri A. Changes in carotenoid and ascorbic acid contents in fruits of different tomato genotypes related to the depletion of UV-B radiation // J. Agric. Food Chem. 2005. V. 53. P. 3174–3181. https://doi.org/10.1021/jf0401726
- Dzakovich M.P., Ferruzzi M.G., Mitchell C.A. Manipulating sensory and phytochemical profiles of greenhouse tomatoes using environmentally relevant doses of ultraviolet radiation // J. Agric. Food Chem. 2016. V. 64. P. 6801–6808. https://doi.org/10.1021/acs.jafc.6b02983
- Lu Y., Dong W., Yang T., Luo Y., Chen P. Preharvest UVB application increases glucosinolate contents and enhances postharvest quality of broccoli microgreens // Molecules. 2021. V. 26. P. 3247. https://doi.org/10.3390/molecules26113247
- Ali A., Franzoni G., Petrini A., Santoro P., Mori J., Ferrante A., Cocetta G. Investigating physiological responses of wild rocket subjected to artificial Ultraviolet B irradiation // Scientia Hortic. 2023. V. 322. P. 112415. https://doi.org/10.1016/j.scienta.2023.112415
- Li T., Yamane H., Tao R. Preharvest long-term exposure to UV-B radiation promotes fruit ripening and modifies stage-specific anthocyanin metabolism in highbush blueberry // Horticulture Res. 2021. V. 8. P. 67. https://doi.org/10.1038/s41438-021-00503-4
- Scott G., Dickinson M., Shama G. Preharvest high-intensity, pulsed polychromatic light and low-intensity UV-C treatments control Botrytis cinerea on lettuce (Lactuca sativa) // Eur. J. Plant Pathol. 2021. V. 159. P. 449–454. https://doi.org/10.1007/s10658-020-02157-9
- Urban L., Charles F., de Miranda M.R.A., Aarrouf J. Understanding the physiological effects of UV-C light and exploiting its agronomic potential before and after harvest // Plant Physiol. Biochem. 2016. V. 105. P. 1–11. https://doi.org/10.1016/j.plaphy.2016.04.004
- Vasquez H., Ouhibi C., Lizzi Y., Azzouz N., Forges M., Bardin M., Bardin M., Nicot P.C., Urban L., Aarrouf J. Pre-harvest hormetic doses of UV-C radiation can decrease susceptibility of lettuce leaves (Lactuca sativa L.) to Botrytis cinerea L. // Scientia Hortic. 2017. V. 222. P. 32–39. https://doi.org/10.1016/j.scienta.2017.04.017
- Martinez-Sánchez A., Lozano-Pastor P., Artés-Hernández F., Artés F., Aguayo E. Preharvest UV-C treatment improves the quality of spinach primary production and postharvest storage // Postharvest Biol. Technol. 2019. V. 155. P. 130–139. https://doi.org/10.1016/j.postharvbio.2019.05.021
- Jin P., Wang H., Zhang Y., Huang Y., Wang L., Zheng Y. UV-C enhances resistance against gray mold decay caused by Botrytis cinerea in strawberry fruit // Scientia Hortic. 2017. V. 225. P. 106–111. https://doi.org/10.1016/j.scienta.2017.06.062
- Pinto E.P., Perin E.C., Schott I.B., da Silva Rodrigues R., Lucchetta L., Manfroi V., Rombaldi C.V. The effect of postharvest application of UV-C radiation on the phenolic compounds of conventional and organic grapes (Vitis labrusca cv. “Concord”) // Postharvest Biol. Technol. 2016. V. 120. P. 84–91. https://doi.org/10.1016/j.postharvbio.2016.05.015
- Zhou D., Sun Y., Li M., Zhu T., Tu K. Postharvest hot air and UV-C treatments enhance aroma-related volatiles by simulating the lipoxygenase pathway in peaches during cold storage // Food Chem. 2019. V. 292. P. 294–303. https://doi.org/10.1016/j.foodchem.2019.04.049
- Jansen M.A.K. Ultraviolet-B radiation effects on plants: induction of morphogenic responses // Physiologia Plantarum. 2002. V. 116. P. 423–429. https://doi.org/10.1034/j.1399-3054.2002.1160319.x
- Nawkar G.M., Maibam P., Park J.H., Sahi V.P., Lee S.Y., Kang C.H. UV-induced cell death in plants // Int. J. Mol. Sci. 2013. V. 14. P. 1608–1628. https://doi.org/10.3390/ijms14011608
- Lee M.J., Son J.E., Oh M.M. Growth and phenolic compounds of Lactuca sativa L. grown in a closed-type plant production system with UV-A, -B, or –Clamp // J. Sci. Food Agric. 2014. V. 94. P. 197–204. https://doi.org/10.1002/jsfa.6227
- Simonsen S., Thyssen J.P., Heegaard S., Kezic S., Skov L. Expression of filaggrin and its degradation products in human skin following erythematous doses of ultraviolet B irradiation // Acta Dermato Venereologica. 2017. V. 97. P. 797–801. https://doi.org/10.2340/00015555-2662
- Yi Y., Xie H., Xiao X., Wang B., Du R., Liu Y., Li Z., Wang J., Sun L., Deng Z., Li J. Ultraviolet A irradiation induces senescence in human dermal fibroblasts by down-regulating DNMT1 via ZEB1 // Aging (Albany NY). 2018. V. 10. P. 212–228. https://doi.org/10.18632/aging.v10i2
- Dickinson S.E., Khawam M., Kirschnerova V., Vaishampayan P., Centuori S.M., Saboda K., Calvert V.S., Petricoin E.F. III, Curiel-Lewandrowski C. Increased PD-L1 expression in human skin acutely and chronically exposed to UV irradiation // Photochem. Photobiol. 2021. V. 97. P. 778–784. https://doi.org/10.1111/php.13406
- Yang Y., Huang Z., Wu Y., Wu W., Lyu L., Li W. Effects of nitrogen application level on the physiological characteristics, yield and fruit quality of blackberry // Sci. Hortic. 2023. V. 313. P. 111915. https://doi.org/10.1016/j.scienta.2023.111915
Supplementary files


