Energy and Pro-/Antioxidant Metabolism of Rhodiola rosea L. Buds During the Annual Growth Cycle
- Authors: Maslova S.P1, Shelyakin M.A1, Silina E.V1, Malyshev R.V1
-
Affiliations:
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences
- Issue: Vol 72, No 2 (2025)
- Pages: 100-114
- Section: ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ
- URL: https://journals.rcsi.science/0015-3303/article/view/357569
- DOI: https://doi.org/10.7868/S3034624X25020021
- ID: 357569
Cite item
Abstract
About the authors
S. P Maslova
Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences
Email: maslova@ib.komisc.ru
Syktyvkar, Russian Federation
M. A Shelyakin
Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of SciencesSyktyvkar, Russian Federation
E. V Silina
Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of SciencesSyktyvkar, Russian Federation
R. V Malyshev
Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of SciencesSyktyvkar, Russian Federation
References
- Lang G.A., Early J.D., Martin G.C., Darnell R.L. Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy research // HortScience. 1987. V. 22. P. 371. https://doi.org/10.21273/HORTSCI.22.3.371
- Considine M.J., Considine J.A. On the language and physiology of dormancy and quiescence in plants // J. Exp. Bot. 2016. V. 67. P. 3189. https://doi.org/10.1093/jxb/env138
- Anderson J.V., Chao W.S., Horvath D.P. Review: a current review on the regulation of dormancy in vegetative buds // Weed Sci. 2001. V. 49. P. 581. https://doi.org/10.1614/0043-1745(2001)049[0581:rcrotr]2.0.co;2
- Shangguan L., Chen M., Fang X., Xie Z., Gong P. Comparative transcriptome analysis provides insight into regulation pathways and temporal and spatial expression characteristics of grapevine (Vitis vinifera) dormant buds in different nodes // BMC Plant Biol. 2020. V. 20. P. 390. https://doi.org/10.1186/s12870-020-02583-1
- Beauvieux R., Wenden B., Dirlewanger E. Bud dormancy in perennial fruit tree species: a pivotal role for oxidative cues // Front. Plant Sci. 2018. V. 9. P. 657. https://doi.org/10.3389/fpls.2018.00657
- Pérez F.J., Rubio S., Ormeño-Núñez J. Is erratic bud-break in grapevines grown in warm winter areas related to disturbances in mitochondrial respiratory capacity and oxidative metabolism? // Funct. Plant Biol. 2007. V. 34. P. 624. https://doi.org/10.1071/FP06272
- Li D., Tan Y., Yu Q., Chen X.-D., Li L., Zhang H.-S., Gao D.-S. Effects of photoperiod on alternative respiration pathway in nectarine flower buds during dormancy induction // Agr. Sci. China. 2011. V. 10. P. 1881. https://doi.org/10.1016/S1671-2927(11)60188-0
- Velappan Y., Chabikwa T.G., Considine J.A., Agudelo-Romero P., Foyer C.H. The bud dormancy disconnect: latent buds of grapevine are dormant during summer despite a high metabolic rate // J. Exp. Bot. 2022. V. 73. P. 2061. https://doi.org/10.1093/jxb/erac001
- Parada F., Noriega X., Dantas D., Bressan-Smith R., Pérez F.J. Differences in respiration between dormant and non-dormant buds suggest the involvement of ABA in the development of endodormancy in grapevines // J. Plant Physiol. 2016. V. 201. P. 71. https://doi.org/10.1016/j.jplph.2016.07.007
- Golovko T.K., Garmash E.V. Plant respiration: classical and current notions // Rus. J. Plant Physiol. 2022. V. 69. P. 108. https://doi.org/10.1134/S1021443722060073
- Porcher A., Montrichard F., Lebrec A., Lothier J., Vian A. Ascorbate glutathione-dependent H2O2 scavenging is an important process in axillary bud outgrowth in rosebush // Ann. Bot. 2020. V. 126. P. 1049. https://doi.org/10.1093/aob/mcaa130
- Porcher A., Guérin V., Leduc N., Lebrec A., Lothier J., Vian A. Ascorbate-glutathione pathways mediated by cytokinin regulate H2O2 levels in light-controlled rose bud burst // Plant Physiol. 2021. V. 186. P. 910. https://doi.org/10.1093/plphys/kiab123
- Pérez F.J., Noriega X., Rubio S. Hydrogen peroxide increases during endodormancy and decreases during budbreak in grapevine (Vitis vinifera L.) buds // Antioxidants. 2021. V. 10. P. 873. https://doi.org/10.3390/antiox10060873
- Kuroda H., Sugiura T., Ito D. Changes in hydrogen peroxide content in flower buds of japanese pear (Pyrus pyrifolia Nakai) in relation to breaking of endodormancy // J. Jpn. Soc. Hortic. Sci. 2002. V. 71. P. 610. https://doi.org/10.2503/jjshs.71.610
- Maslova S.P., Shelyakin M.A., Silina E.V., Malyshev R.V., Dalke I.V. Energy and pro-/antioxidant metabolism of Heracleum sosnowskyi Manden. buds during the winter dormancy // Rus. J. Plant Physiol. 2024. V. 71. P. 123. https://doi.org/10.1134/S1021443724605780
- Anghelescu I.-G., Edwards D., Seifritz E., Kasper S. Stress management and the role of Rhodiola rosea: a review // Int. J. Psychiatry Clin. Pract. 2018. V. 22. P. 242. https://doi.org/10.1080/13651501.2017.1417442
- Nukhimovsky E.L. Nachal'nye etapy biomorfogeneza Rhodiola rosea L., vyrashchivaemoj v Moskovskoj oblasti (Initial stages of biomorphogenesis of Rhodiola rosea L. grown in the Moscow region). Plants and Resources. 1976. V. 12. P. 348.
- Dalke I.V. Ekologo-fiziologicheskie i morfologicheskie harakteristiki Rhodiola rosea L. iz arkticheskoj i ural'skoj chastej areala (Ecological, physiological and morphological characteristics of Rhodiola rosea L. from the Arctic and Ural parts of its range): Abstract of thesis ... Candidate of Biological Sciences. Saint Petersburg: IB Komi Science Centre, Ural Branch of the Russian Academy of Sciences, 2002. 24 p.
- Malyshev R.V. Opredelenie svobodnoj i svyazannoj vody v rastitel'nyh tkanyah s razlichnym osmoticheskim davleniem, sravnitel'nyj analiz metoda vysushivaniya nad vodotnimayushchej sredoj i differencial'noj skaniruyushchej kalorimetrii (Determination of free and bound water in plant tissues with different osmotic pressures, comparative analysis of the method of drying above a water-absorbing medium and differential scanning calorimetry). Biology Bulletin Reviews 2021. V. 141. P. 164. https://doi.org/10.31857/S004213242102006X
- Hansen L.D., Hopkin M.S., Rank D.R., Anekonda T.S., Breidenbach R.W., Criddle R.S. The relation between plant growth and respiration: a thermodynamic model // Planta. 1994. V. 194. P. 77. https://doi.org/10.1007/BF00201037
- Heath R.L., Packer L. Photoperoxidation in isolated chloroplasts // Arch. Biochem. Biophys. 1968. V. 125. P. 189. https://doi.org/10.1016/0003-9861(68)90654-1
- Silina E.V., Malyshev R.V., Zakhozhyi I.G. Optimizaciya metodiki podgotovki antociansoderzhashchih ekstraktov rastitel'nyh obrazcov dlya kolichestvennogo opredeleniya soderzhaniya peroksida vodoroda hemilyuminescentnym metodom (Optimisation of the method for preparing anthocyanin-containing extracts from plant samples for quantitative determination of hydrogen peroxide content using a chemiluminescent method). Russian Journal of Plant Physiology. 2025. V. 72. P. 70. https://doi.org/10.31857/S0015330325010079
- Beauchamp C., Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels // Anal. Biochem. 1971. V. 44. P. 276. https://doi.org/10.1016/0003-2697(71)90370-8
- Nakano Y., Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts // Plant Cell Physiol. 1981. V. 22. P. 867. https://doi.org/10.1093/oxfordjournals.pcp.a076232
- Aebi H. Catalase in vitro // Methods in enzymology. San Diego: Academic Press, 1984. V. 105. P. 121. https://doi.org/10.1016/S0076-6879(84)05016-3
- Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal. Biochem. 1976. V. 72. P. 248. https://doi.org/10.1016/0003-2697(76)90527-3
- Miszalski Z., Ślesak I., Niewiadomska E., Bączek-Kwinta R., Lüttge U., Ratajczak R. Subcellular localization and stress responses of superoxide dismutase isoforms from leaves in the C3-CAM intermediate halophyte Mesembryanthemum crystallinum L. // Plant Cell Environ. 1998. V. 21. P. 169. https://doi.org/10.1046/j.1365-3040.1998.00266.x
- Morozova L.M., Stepanova A.V., Magomedova M.A. Ekologo-fitocenoicheskaya priurochennost', vozrastnoj sostav cenopopulyacij i zapas kornevisheh Rhodiola rosea L. na Pripolyarnom Urale (Ecological and phytoconotic distribution, age composition of cenopopulations and rhizome reserves of Rhodiola rosea L. in the Subpolar Urals). Plants and Resources. 1997. V. 33. P. 3.
- Frolov Yu.M., Poletaeva I.I. Rodiola rozovaya na Evropejskom Severo-Vostoke (Rhodiola rosea in the European North-East). Yekaterinburg: Ural Branch of the Russian Academy of Sciences, 1998. 192 p.
- Kim E.F. Rodiola rozovaya (zolotoj koren') sem. Tolstyankovyh i biologicheskie osnovy vvedeniya ee v kul'turu (Rhodiola rosea (golden root) of the Crassulaceae family and the biological basis for its introduction into cultivation): Abstract of thesis ... Doctor of Biological Sciences. Novosibirsk, 1999. 31 p.
- Kovaleva N.P., Tikhomirov A.A., Dolgushev V.A. Specific characteristics of Rhodiola rosea growth and development under the photoculture conditions // Rus. J. Plant Physiol. 2003. V. 50. P. 527. https://doi.org/10.1023/A:1024781025696
- Maslova S.P., Tabalenkova G.N., Malyshev R.V., Golovko T.K. Seasonal changes in growth and metabolic activity of underground shoots of yarrow // Rus. J. Plant Physiol. 2013. V. 60. P. 821. https://doi.org/10.1134/S1021443713060071
- Kazarinova N.V. Ekologo-biologicheskie osobennosti Rhodiola rosea v gornom Altae (Ecological and biological characteristics of Rhodiola rosea in the Altai Mountains). Proceedings of the Siberian Branch of the USSR Academy of Sciences. 1977. V. 15. P. 38.
- Porcher A., Guérin V., Macherel D., Lebrec A., Satour P., Lothier J., Vian A. High expression of ALTERNATIVE OXIDASE2 in latent axillary buds suggests its key role in quiescence maintenance in rosebush // Plant Cell Physiol. 2023. V. 64. P. 165. https://doi.org/10.1093/pcp/pcac153
- Garmash E.V. Signal pathways for regulation of plant alternative oxidase genes' expression // Rus. J. Plant Physiol. 2022. V. 69. P. 1. https://doi.org/10.1134/S102144372010058
- Malyshev R.V., Shelyakin M.A., Golovko T.K. Bud dormancy breaking affects respiration and energy balance of bilberry shoots in the initial stage of growth // Rus. J. Plant Physiol. 2016. V. 63. P. 409. https://doi.org/10.1134/S1021443716030092
- Chen X.-J., Xia X.-J., Guo X., Zhou Y.-H., Shi K., Zhou J., Yu J.-Q. Apoplastic H2O2 plays a critical role in axillary bud outgrowth by altering auxin and cytokinin homeostasis in tomato plants // New Phytol. 2016. V. 211. P. 1266. https://doi.org/10.1111/nph.14015
- Sauer H., Wartenberg M., Hescheler J. Reactive oxygen species as intracellular messengers during cell growth and differentiation // Cell Physiol. Biochem. 2001. V. 11. P. 173. https://doi.org/10.1159/000047804
- Ionescu I.A., López-Ortega G., Burow M., Bayo-Canha A., Junge A. Transcriptome and metabolite changes during hydrogen cyanamide-induced floral bud break in sweet cherry // Front. Plant Sci. 2017. V. 8. P. 1233. https://doi.org/10.3389/fpls.2017.01233
- Kuroda H., Sugiura T., Sugiura H. Effect of hydrogen peroxide on breaking endodormancy in flower buds of japanese pear (Pyrus pyrifolia Nakai) // J. Jpn. Soc. Hortic. Sci. 2005. V. 74. P. 255. https://doi.org/10.2503/jjshs.74.255
- Hernández J.A., Acosta-Motos J.R., Alburaquerque N., Martínez D., Carrera E., García-Bruntón J., Barba-Espín G. Interplay among antioxidant system, hormone profile and carbohydrate metabolism during bud dormancy breaking in a high-chill peach variety // Antioxidants. 2021. V. 10. P. 560. https://doi.org/10.3390/antiox10040560
- Gupta S., Dong Y., Dijkwel P.P., Mueller-Roeber B., Gechev T.S. Genome-wide analysis of ROS antioxidant genes in resurrection species suggest an involvement of distinct ROS detoxification systems during desiccation // Int. J. Mol. Sci. 2019. V. 20. P. 3101. https://doi.org/10.3390/ijms20123101
Supplementary files


