Energy and Pro-/Antioxidant Metabolism of Rhodiola rosea L. Buds During the Annual Growth Cycle
- Autores: Maslova S.P1, Shelyakin M.A1, Silina E.V1, Malyshev R.V1
-
Afiliações:
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences
- Edição: Volume 72, Nº 2 (2025)
- Páginas: 100-114
- Seção: ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ
- URL: https://journals.rcsi.science/0015-3303/article/view/357569
- DOI: https://doi.org/10.7868/S3034624X25020021
- ID: 357569
Citar
Resumo
Sobre autores
S. Maslova
Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences
Email: maslova@ib.komisc.ru
Syktyvkar, Russian Federation
M. Shelyakin
Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of SciencesSyktyvkar, Russian Federation
E. Silina
Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of SciencesSyktyvkar, Russian Federation
R. Malyshev
Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of SciencesSyktyvkar, Russian Federation
Bibliografia
- Lang G.A., Early J.D., Martin G.C., Darnell R.L. Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy research // HortScience. 1987. V. 22. P. 371. https://doi.org/10.21273/HORTSCI.22.3.371
- Considine M.J., Considine J.A. On the language and physiology of dormancy and quiescence in plants // J. Exp. Bot. 2016. V. 67. P. 3189. https://doi.org/10.1093/jxb/env138
- Anderson J.V., Chao W.S., Horvath D.P. Review: a current review on the regulation of dormancy in vegetative buds // Weed Sci. 2001. V. 49. P. 581. https://doi.org/10.1614/0043-1745(2001)049[0581:rcrotr]2.0.co;2
- Shangguan L., Chen M., Fang X., Xie Z., Gong P. Comparative transcriptome analysis provides insight into regulation pathways and temporal and spatial expression characteristics of grapevine (Vitis vinifera) dormant buds in different nodes // BMC Plant Biol. 2020. V. 20. P. 390. https://doi.org/10.1186/s12870-020-02583-1
- Beauvieux R., Wenden B., Dirlewanger E. Bud dormancy in perennial fruit tree species: a pivotal role for oxidative cues // Front. Plant Sci. 2018. V. 9. P. 657. https://doi.org/10.3389/fpls.2018.00657
- Pérez F.J., Rubio S., Ormeño-Núñez J. Is erratic bud-break in grapevines grown in warm winter areas related to disturbances in mitochondrial respiratory capacity and oxidative metabolism? // Funct. Plant Biol. 2007. V. 34. P. 624. https://doi.org/10.1071/FP06272
- Li D., Tan Y., Yu Q., Chen X.-D., Li L., Zhang H.-S., Gao D.-S. Effects of photoperiod on alternative respiration pathway in nectarine flower buds during dormancy induction // Agr. Sci. China. 2011. V. 10. P. 1881. https://doi.org/10.1016/S1671-2927(11)60188-0
- Velappan Y., Chabikwa T.G., Considine J.A., Agudelo-Romero P., Foyer C.H. The bud dormancy disconnect: latent buds of grapevine are dormant during summer despite a high metabolic rate // J. Exp. Bot. 2022. V. 73. P. 2061. https://doi.org/10.1093/jxb/erac001
- Parada F., Noriega X., Dantas D., Bressan-Smith R., Pérez F.J. Differences in respiration between dormant and non-dormant buds suggest the involvement of ABA in the development of endodormancy in grapevines // J. Plant Physiol. 2016. V. 201. P. 71. https://doi.org/10.1016/j.jplph.2016.07.007
- Golovko T.K., Garmash E.V. Plant respiration: classical and current notions // Rus. J. Plant Physiol. 2022. V. 69. P. 108. https://doi.org/10.1134/S1021443722060073
- Porcher A., Montrichard F., Lebrec A., Lothier J., Vian A. Ascorbate glutathione-dependent H2O2 scavenging is an important process in axillary bud outgrowth in rosebush // Ann. Bot. 2020. V. 126. P. 1049. https://doi.org/10.1093/aob/mcaa130
- Porcher A., Guérin V., Leduc N., Lebrec A., Lothier J., Vian A. Ascorbate-glutathione pathways mediated by cytokinin regulate H2O2 levels in light-controlled rose bud burst // Plant Physiol. 2021. V. 186. P. 910. https://doi.org/10.1093/plphys/kiab123
- Pérez F.J., Noriega X., Rubio S. Hydrogen peroxide increases during endodormancy and decreases during budbreak in grapevine (Vitis vinifera L.) buds // Antioxidants. 2021. V. 10. P. 873. https://doi.org/10.3390/antiox10060873
- Kuroda H., Sugiura T., Ito D. Changes in hydrogen peroxide content in flower buds of japanese pear (Pyrus pyrifolia Nakai) in relation to breaking of endodormancy // J. Jpn. Soc. Hortic. Sci. 2002. V. 71. P. 610. https://doi.org/10.2503/jjshs.71.610
- Maslova S.P., Shelyakin M.A., Silina E.V., Malyshev R.V., Dalke I.V. Energy and pro-/antioxidant metabolism of Heracleum sosnowskyi Manden. buds during the winter dormancy // Rus. J. Plant Physiol. 2024. V. 71. P. 123. https://doi.org/10.1134/S1021443724605780
- Anghelescu I.-G., Edwards D., Seifritz E., Kasper S. Stress management and the role of Rhodiola rosea: a review // Int. J. Psychiatry Clin. Pract. 2018. V. 22. P. 242. https://doi.org/10.1080/13651501.2017.1417442
- Нухимовский Е.Л. Начальные этапы биоморфогенеза Rhodiola rosea L., выращиваемой в Московской области // Растительные ресурсы. 1976. Т. 12. С. 348.
- Дальке И. В. Эколого-физиологические и морфологические характеристики Rhodiola rosea L. из арктической и уральской частей ареала: Автореф. дис. ... канд. биол. наук. Санкт-Петербург: ИБ Коми НЦ УрО РАН, 2002. 24 с.
- Малышев Р.В. Определение свободной и связанной воды в растительных тканях с различным осмотическим давлением, сравнительный анализ метода высушивания над водоотнимающей средой и дифференциальной сканирующей калориметрии // Успехи современной биологии 2021. Т. 141. С. 164. https://doi.org/10.31857/S004213242102006X
- Hansen L.D., Hopkin M.S., Rank D.R., Anekonda T.S., Breidenbach R.W., Criddle R.S. The relation between plant growth and respiration: a thermodynamic model // Planta. 1994. V. 194. P. 77. https://doi.org/10.1007/BF00201037
- Heath R.L., Packer L. Photoperoxidation in isolated chloroplasts // Arch. Biochem. Biophys. 1968. V. 125. P. 189. https://doi.org/10.1016/0003-9861(68)90654-1
- Силина Е.В., Малышев Р.В., Захохзий И.Г. Оптимизация методики подготовки антоциансодержащих экстрактов растительных образцов для количественного определения содержания пероксида водорода хемилюминесцентным методом // Физиология растений. 2025. Т. 72. С. 70. https://doi.org/10.31857/S0015330325010079
- Beauchamp C., Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels // Anal. Biochem. 1971. V. 44. P. 276. https://doi.org/10.1016/0003-2697(71)90370-8
- Nakano Y., Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts // Plant Cell Physiol. 1981. V. 22. P. 867. https://doi.org/10.1093/oxfordjournals.pcp.a076232
- Aebi H. Catalase in vitro // Methods in enzymology. San Diego: Academic Press, 1984. V. 105. P. 121. https://doi.org/10.1016/S0076-6879(84)05016-3
- Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal. Biochem. 1976. V. 72. P. 248. https://doi.org/10.1016/0003-2697(76)90527-3
- Miszalski Z., Ślesak I., Niewiadomska E., Bączek-Kwinta R., Lüttge U., Ratajczak R. Subcellular localization and stress responses of superoxide dismutase isoforms from leaves in the C3-CAM intermediate halophyte Mesembryanthemum crystallinum L. // Plant Cell Environ. 1998. V. 21. P. 169. https://doi.org/10.1046/j.1365-3040.1998.00266.x
- Морозова Л.М., Степанова А.В., Магомедова М.А. Эколого-фитоценотическая приуроченность, возрастной состав ценопопуляций и запас корневищ Rhodiola rosea L. на Приполярном Урале // Растительные ресурсы. 1997. Т. 33. С. 3.
- Фролов Ю.М., Полетаева И.И. Родиола розовая на Европейском Северо-Востоке. Екатеринбург: УрО РАН, 1998. 192 с.
- Ким Е.Ф. Родиола розовая (золотой корень) сем. Толстянковых и биологические основы введения ее в культуру: Автореф. дис. ... докт. биол. наук. Новосибирск, 1999. 31 с.
- Kovaleva N.P., Tikhomirov A.A., Dolgushev V.A. Specific characteristics of Rhodiola rosea growth and development under the photoculture conditions // Rus. J. Plant Physiol. 2003. V. 50. P. 527. https://doi.org/10.1023/A:1024781025696
- Maslova S.P., Tabalenkova G.N., Malyshev R.V., Golovko T.K. Seasonal changes in growth and metabolic activity of underground shoots of yarrow // Rus. J. Plant Physiol. 2013. V. 60. P. 821. https://doi.org/10.1134/S1021443713060071
- Казаринова Н.В. Эколого-биологические особенности Rhodiola rosea в горном Алтае // Известия Сибирского отделения Академии наук СССР. 1977. Т. 15. С. 38.
- Porcher A., Guérin V., Macherel D., Lebrec A., Satour P., Lothier J., Vian A. High expression of ALTERNATIVE OXIDASE2 in latent axillary buds suggests its key role in quiescence maintenance in rosebush // Plant Cell Physiol. 2023. V. 64. P. 165. https://doi.org/10.1093/pcp/pcac153
- Garmash E.V. Signal pathways for regulation of plant alternative oxidase genes' expression // Rus. J. Plant Physiol. 2022. V. 69. P. 1. https://doi.org/10.1134/S102144372010058
- Malyshev R.V., Shelyakin M.A., Golovko T.K. Bud dormancy breaking affects respiration and energy balance of bilberry shoots in the initial stage of growth // Rus. J. Plant Physiol. 2016. V. 63. P. 409. https://doi.org/10.1134/S1021443716030092
- Chen X.-J., Xia X.-J., Guo X., Zhou Y.-H., Shi K., Zhou J., Yu J.-Q. Apoplastic H2O2 plays a critical role in axillary bud outgrowth by altering auxin and cytokinin homeostasis in tomato plants // New Phytol. 2016. V. 211. P. 1266. https://doi.org/10.1111/nph.14015
- Sauer H., Wartenberg M., Hescheler J. Reactive oxygen species as intracellular messengers during cell growth and differentiation // Cell Physiol. Biochem. 2001. V. 11. P. 173. https://doi.org/10.1159/000047804
- Ionescu I.A., López-Ortega G., Burow M., Bayo-Canha A., Junge A. Transcriptome and metabolite changes during hydrogen cyanamide-induced floral bud break in sweet cherry // Front. Plant Sci. 2017. V. 8. P. 1233. https://doi.org/10.3389/fpls.2017.01233
- Kuroda H., Sugiura T., Sugiura H. Effect of hydrogen peroxide on breaking endodormancy in flower buds of japanese pear (Pyrus pyrifolia Nakai) // J. Jpn. Soc. Hortic. Sci. 2005. V. 74. P. 255. https://doi.org/10.2503/jjshs.74.255
- Hernández J.A., Acosta-Motos J.R., Alburaquerque N., Martínez D., Carrera E., García-Bruntón J., Barba-Espín G. Interplay among antioxidant system, hormone profile and carbohydrate metabolism during bud dormancy breaking in a high-chill peach variety // Antioxidants. 2021. V. 10. P. 560. https://doi.org/10.3390/antiox10040560
- Gupta S., Dong Y., Dijkwel P.P., Mueller-Roeber B., Gechev T.S. Genome-wide analysis of ROS antioxidant genes in resurrection species suggest an involvement of distinct ROS detoxification systems during desiccation // Int. J. Mol. Sci. 2019. V. 20. P. 3101. https://doi.org/10.3390/ijms20123101
Arquivos suplementares
