Фитомелатонин как элемент гормональной системы растений

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Мелатонин (N-ацетил-5-метокситриптамин), гормон животных, антиоксидант и регуляторная молекула, привлекает все большее внимание биологов. Мелатонин, открытый в растениях в 1995 г. и позднее названный фитомелатонином (ФМТ), регулирует многие этапы онтогенеза растений, начиная от прорастания семян и заканчивая процессом старения. ФМТ является одним из наиболее мощных антиоксидантов растительной клетки. Многочисленные экспериментальные данные показывают, что ФМТ повышает устойчивость растений в условиях действия как абиотических, так и биотических стрессов. В регуляции физиологических процессов он взаимодействует практически со всеми известными в настоящее время фитогормонами. Сейчас довольно хорошо изучен биосинтез ФМТ, его полифункциональная активность, открыт первый рецептор и некоторые компоненты цепи его сигналинга. Все это позволяет считать ФМТ новым гормоном растений.

Full Text

Restricted Access

About the authors

В. В. Кузнецов

Федеральное государственное бюджетное научное учреждение науки Институт физиологии растений им. К.А. Тимирязева Российской академии наук

Email: nvkudryakova@mail.ru
Russian Federation, Москва

И. А. Бычков

Федеральное государственное бюджетное научное учреждение науки Институт физиологии растений им. К.А. Тимирязева Российской академии наук

Email: nvkudryakova@mail.ru
Russian Federation, Москва

Н. В. Кудрякова

Федеральное государственное бюджетное научное учреждение науки Институт физиологии растений им. К.А. Тимирязева Российской академии наук

Author for correspondence.
Email: nvkudryakova@mail.ru
Russian Federation, Москва

References

  1. Lerner A.B., Case J.D., Takahashi Y., Lee T.H., Mori W. Isolation of melatonin, the pineal gland factor that lightens melanocytes // J. Amer. Chem. Soc. 1958. V. 80. P. 2587.
  2. Tan D.X., Zheng X., Kong J., Manchester L.C., Hardeland R., Kim S.J., Xu X., Reiter R.J. Fundamental issues related to the origin of melatonin and melatonin isomers during evolution: relation to their biological functions // Int. J. Mol. Sci. 2014. V. 15. P. 15858. https://doi.org/10.3390/ijms150915858
  3. Zhao D., Yu Y., Shen Y., Liu Q., Zhao Z., Sharma R., Reiter R.J. Melatonin synthesis and function: evolutionary history in animals and plants // Front. Endocrinol. 2019. V. 10. P. 249. https://doi.org/10.3389/fendo.2019.00249
  4. Tan D.X., Manchester L.C., Liu X., Rosales-Corral S.A., Acuna-Castroviejo D., Reiter R.J. Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes // J. Pineal Res. 2013. V. 54. P. 127. https://doi.org/10.1111/jpi.12026
  5. Dubbels R., Reiter R.J., Klenke E., Goebel A., Schnakenberg E., Ehlers C. Schiwara H.W., Schloot W. Melatonin in edible plants identified by radioimmunoas-liquid chromatography-mass spectrometry // J. Pineal Res. 1995. V. 18. P. 28. https://doi.org/10.1111/j.1600-079x.1995.tb00136.x
  6. Hattori A., Migitaka H., Iigo M., Itoh M., Yamamoto K., Ohtani-Kaneko R., Hara M., Suzuki T., Reiter R.J. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates // Biochem. Mol. Biol. Int. 1995. V. 35. P. 627.
  7. Murch S.J., Erland L.A.E. A Systematic review of melatonin in plants: an example of evolution of literature // Front. Plant Sci. 2021. V. 12. P. 683047. https://doi.org/10.3389/fpls.2021.683047
  8. Arnao M.B., Hernandez-Ruiz J. Melatonin in flowering, fruit set and fruit ripening // Plant Reprod. 2020. V. 33. P. 77. https://doi.org/10.1007/s00497-020-00388-8
  9. Arnao M.B. Phytomelatonin: discovery, content, and role in plants // Adv. Bot. 2014. V. 2014. Article 815769. https://doi.org/10.1155/2014/815769
  10. Back K. Melatonin metabolism, signaling and possible roles in plants // Plant J. 2021. V. 105. P. 376. https://doi.org/10.1111/tpj.14915
  11. Hardeland R. Melatonin in plants and other phototrophs: advances and gaps concerning the diversity of functions // J. Exp. Bot. 2015. V. 66. P. 627. https://doi.org/10.1093/jxb/eru386
  12. Kanwar M.K., Yu J., Zhou J. Phytomelatonin: Recent advances and future prospects // J. Pineal Res. 2018. V. 65. e12526. https://doi.org/10.1111/jpi.12526
  13. Tan D.X., Chen L.D., Poeggeler B., Manchester L., Reiter R.J. Melatonin: a potent, endogenous hydroxyl radical scavenger // Endocr. J. 1993. V. 1. P. 57.
  14. Arnao M.B., Hernández-Ruiz J. Melatonin and reactive oxygen and nitrogen species: a model for the plant redox network // Melatonin Res. 2019. V. 2. P. 152. https://doi.org/10.1111/plb.13202
  15. Mannino G., Pernici C., Serio G., Gentile C., Bertea C.M. Melatonin and phytomelatonin: chemistry, biosynthesis, metabolism, distribution and bioactivity in plants and animals // Int. J. Mol. Sci. 2021. V. 22. P. 9996. https://doi.org/10.3390/ijms22189996
  16. Tan D.X., Manchester L.C., Terron M.P., Flores L.J., Reiter R.J. One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? // J. Pineal Res. 2007. V. 42. P. 28. https://doi.org/10.1111/j.1600-079X.2006.00407.x.
  17. Reiter R.J., Poeggeler B., Tan D.-X., Chen L.-D., Manchester L.C., Guerrero J.M. Antioxidant capacity of melatonin: a novel action not requiring a receptor // Neuroendoc. Lett. 1993. V. 15. P. 103. https://doi.org/10.1210/edrv-12-2-151
  18. Back K., Tan D.-X., Reiter R.J. Melatonin biosynthesis in plants: Multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts // J. Pineal. Res. 2016. V. 61. P. 426. https://doi.org/10.1111/jpi.12364
  19. Yang X., Chen J., Ma Y., Huang M., Qiu T., Bian H., Han N., Wang J. Function, mechanism, and application of plant melatonin: An update with a focus on the cereal crop, barley (Hordeum vulgare L.) // Antioxidants. 2022. V. 11. P. 634. https://doi.org/10.3390/antiox11040634
  20. Murch S.J., KrishnaRaj S., Saxena P.K. Tryptophan is a precursor for melatonin and serotonin biosynthesis in in vitro regenerated St. John’s wort (Hypericum perforatum L. cv. Anthos) plants // Plant Cell Rep. 2000. V. 19. P. 698. https://doi.org/10.1007/s002990000206
  21. Liu G., Hu Q., Zhang X., Jiang J., Zhang Y., Zhang Z. Melatonin biosynthesis and signal transduction in plants in response to environmental conditions // J. Exp. Bot. 2022. V. 73. P. 5818. https://doi.org/10.1093/jxb/erac196.
  22. Murch S.J., Saxena P.K. A melatonin-rich germplasm line of St John’s wort (Hypericum perforatum L.). // J. Pineal Res. 2006. V. 41. P. 284. https://doi.org/10.1111/j.1600-079X.2006.00367.x.
  23. Zhang Z., Zhang Y. Melatonin in plants: what we know and what we don’t // Food Quality and Safety. 2021. V. 5. P. 1. https://doi.org/10.1093/fqsafe/fyab009
  24. Tan D.X., Reiter R.J. An evolutionary view of melatonin synthesis and metabolism related to its biological functions in plants // J. Exp. Bot. 2020. V. 71. P. 4677. https://doi.org/10.1093/jxb/eraa235
  25. Ye T., Yin X., Yu L., Zheng S.J., Cai W.J., Wu Y., Feng Y.Q. Metabolic analysis of the melatonin biosynthesis pathway using chemical labeling coupled with liquid chromatography-mass spectrometry // J. Pineal Res. 2019. V. 66. e12531. https://doi.org/10.1111/jpi.12531
  26. Lee K., Back K. Melatonin-deficient rice plants show a common semidwarf phenotype either dependent or independent of brassinosteroid biosynthesis // J. Pineal Res. 2019. V. 66. e12537. https://doi.org/10.1111/jpi.12537
  27. Kang K., Kong K., Park S., Natsagdor U., Kim Y.S., Back K. Molecular cloning of a plant N-acetylserotonin methyltransferase and its expression characteristics in rice // J. Pineal Res. 2011. V. 50. P. 304. https://doi.org/10.1111/j.1600-079X.2010.00841.x
  28. Zhang T., Wang J., Sun Y., Zhang L., Zheng S. Versatile roles of melatonin in growth and stress tolerance in plants // J. Plant Growth Regul. 2022. V. 41. P. 507. https://doi.org/10.1007/s00344-021-10317-2
  29. Gao Y., Chen H., Chen D., Hao G. Genetic and evolutionary dissection of melatonin response signaling facilitates the regulation of plant growth and stress responses // J. Pineal Res. 2023. e12850. https://doi.org/10.1111/jpi.12850
  30. Cai S.Y., Zhang Y., Xu Y.P., Qi Z.Y., Li M.Q., Ahammed G.J., Xia X.J., Shi K., Zhou Y.H., Reiter R.J., Yu J.Q., Zhou J. HsfA1a upregulates melatonin biosynthesis to confer cadmium tolerance in tomato plants // J. Pineal Res. 2017. V. 62. https://doi.org/10.1111/jpi.12387
  31. Wei Y., Liu G., Bai Y., Xia F., He C., Shi H., Foyer C. Two transcriptional activators of N-acetylserotonin O-methyltransferase 2 and melatonin biosynthesis in cassava // J. Exp. Bot. 2017. V. 68. P. 4997. https://doi.org/10.1093/jxb/erx305
  32. Wei Y., Chang Y., Zeng H., Liu G., He C., Shi H. RAV transcription factors are essential for disease resistance against cassava bacterial blight via activation of melatonin biosynthesis genes // J. Pineal Res. 2018. V. 64. e12454. https://doi.org/10.1111/jpi.12454
  33. Bai Y., Wei Y., Yin H., Hu W., Cheng X., Guo J., Dong Y., Zheng L., Xie H., Zeng H., Reiter R.J., Shi H. PP2C1 fine-tunes melatonin biosynthesis and phytomelatonin receptor PMTR1 binding to melatonin in cassava // J. Pineal Res. 2022. V. 73. e12804. https://doi.org/10.1111/jpi.12804
  34. Zheng X., Tan D., Allan A.C., Zuo B., Zhao Y., Reiter R.J., Wang L., Wang Z., Guo Y., Zhou J., Shan D., Li Q., Han Z., Kong J. Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress // Sci. Rep. 2017. V. 7. P. 41236. https://doi.org/10.1038/srep41236
  35. Wang L., Feng C., Zheng X., Guo Y., Zhou F., Shan D., Liu X., Kong J. Plant mitochondria synthesize melatonin and enhance the tolerance of plants to drought stress // J. Pineal Res. 2017. V. 63. e12429. https://doi.org/10.1111/jpi.12429
  36. Tan D.-X., Manchester L.C., Mascio P.D., Martinez G.R., Prado F.M., Reiter R.J. Novel rhythms of N-1-acetyl-N-2-formyl-5-methoxykynuramine and its precursor melatonin in water hyacinth: importance for phytoremediation // FASEB J. 2007. V. 21. P. 1724. https://doi.org/10.1096/fj.06-7745com
  37. Hardeland R., Tan D.-X., Reiter R.J. Kynuramines, metabolites of melatonin and other indoles: the resurrection of an almost forgotten class of biogenic amines // J. Pineal Res. 2009. V. 47. P. 109. https://doi.org/10.1111/j.1600-079X.2009.00701.x
  38. Okazaki M., Higuchi K., Aouini A., Ezura H. Lowering intercellular melatonin levels by transgenic analysis of indoleamine 2,3-dioxygenase from rice in tomato plants // J. Pineal Res. 2010. V. 49. P. 239. https://doi.org/10.1111/j.1600-079X.2010.00788.x
  39. Byeon Y., Back K. Molecular cloning of melatonin 2-hydroxylase responsible for 2-hydroxymelatonin production in rice (Oryza sativa) // J. Pineal Res. 2015. V. 58. P. 343. https://doi.org/10.1111/jpi.12220
  40. Shah A.A., Ahmed S., Yasin N.A. 2-Hydroxymelatonin induced nutritional orchestration in Cucumis sativus under cadmium toxicity: modulation of non-enzymatic antioxidants and gene expression // Int. J. Phytoremed. 2019. V. 22. P. 1. https://doi.org/10.1080/15226514.2019.1683715
  41. Wei J., Li D-X., Zhang J-R., Shan C., Rengel Z., Song Z-B., Qi Chen Q. Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana // J. Pineal Res. 2018. e12500. https://doi.org/10.1111/jpi.12500
  42. Lee H.Y., Back K. The phytomelatonin receptor (PMRT1) Arabidopsis Cand2 is not a bona fide G protein–coupled melatonin receptor // Melatonin Res. 2020. V. 3. P. 177. https://doi.org/10.32794/mr11250055
  43. Khan D., Cai N., Zhu W., Li L., Guan M., Pu X., Chen Q. The role of phytomelatonin receptor 1-mediated signaling in plant growth and stress response // Front. Plant Sci. 2023. V. 14. P. 1142753. https://doi.org/10.3389/fpls.2023.1142753
  44. Yin X., Bai Y.L., Gong C., Song W., Wu Y., Ye T., Feng Y.Q. The phytomelatonin receptor PMTR1 regulates seed development and germination by modulating abscisic acid homeostasis in Arabidopsis thaliana // J. Pineal. Res. 2022. V. 72. e12797. https://doi.org/10.1111/jpi.12797
  45. Kong M., Sheng T., Liang J., Ali Q., Gu Q., Wu H., Chen J., Liu J., Gao X. Melatonin and its homologs induce immune responses via receptors trP47363-trP13076 in Nicotiana benthamiana // Front. Plant Sci. 2021. V. 12. P. 1197. https://doi.org/10.3389/fpls.2021.691835
  46. Wang L.F., Lu K.K., Li T.T., Zhang Y., Guo J.X., Song R.F., Liu W.C. Maize PHYTOMELATONIN RECEPTOR1 functions in plant osmotic and drought stress tolerance // J. Exp. Bot. 2021. V. 73. P. 5961. https://doi.org/10.1093/jxb/erab553
  47. Bychkov I.A., Kudryakova N.V., Shugaev A.G., Kuznetsov Vl.V., Kusnetsov V.V. The melatonin receptor CAND2/PMTR1 is involved in the regulation of mitochondrial gene expression under photooxidative stress // Dokl. Biochem. Biophys. 2022. V. 502. P. 15. https://doi.org/10.1134/S1607672922010021
  48. Bychkov I., Kudryakova N., Pojidaeva E., Kusnetsov V. The melatonin receptor CAND2 is involved in the regulation of photosynthesis and chloroplast gene expression in Arabidopsis thaliana under photooxidative stress // Photosinth. 2021. V. 59. P. 683. https://doi.org/10.32615/ps.2021.061
  49. Park W.J. Have all of the phytohormonal properties of melatonin been verified? // Int. J. Mol. Sci. 2024. V. 25. P. 3550. https://doi.org/10.3390/ijms25063550
  50. Yu R., Zuo T., Diao P., Fu J., Fan Y., Wang Y., Zhao Q., Ma X., Lu W., Li A., Wang R., Yan F., Pu L., Niu Y., Wuriyanghan H. Melatonin enhances seed germination and seedling growth of Medicago sativa under salinity via a putative melatonin receptor MsPMTR1 // Front. Plant Sci. 2021. V. 12. P. 702875. https://doi.org/10.3389/fpls.2021.702875
  51. Yang Q., Peng Z., Ma W., Zhang S., Hou S., Wei J., Dong S., Yu X., Song Y., Gao W., Rengel Z., Huang L., Cui X., Chen Q. Melatonin functions in priming of stomatal immunity in Panax notoginseng and Arabidopsis thaliana // Plant Physiol. 2021. V. 87. P. 2837. https://doi.org/10.1093/plphys/kiab419.
  52. Skoog F., Miller C. Chemical regulation of growth and organ formation in plant tissues cultured in vitro // Sympos. Soc. Exptl. Biol. 1957. V. 11. P. 118.
  53. Hernández-Ruiz J., Cano A., Arnao M.B. Melatonin: A growth-stimulating compound present in lupin tissues // Planta. 2004. V. 220. P. 140. https://doi.org/10.1007/s00425-004-1317-3
  54. Arnao M.B., Hernandez-Ruiz J. The physiological function of melatonin in plants // Plant Signal. Beh. 2006. V. 1. P. 89.
  55. Arnao M.B., Hernandez-Ruiz J. Melatonin and its relationship to plant hormones // Ann. Bot. 2018. V. 121. P. 195. https://doi.org/10.1093/aob/mcx114
  56. Wang Y., Reiter R.J., Chan Z. Phytomelatonin: a universal abiotic stress regulator // J. Exp. Bot. 2018. V. 69. P. 963. https://doi.org/10.1093/jxb/erx473
  57. Sun H., Jia M., Wang Y., Lu H., Wang H. The complexity of melatonin and other phytohormones crosstalk with other signaling molecules for drought tolerance in horticultural crops // Scientia Horticulturae. 2023. V. 321. P. 112348. https://doi.org/10.1016/j.scienta.2023.112348
  58. Lauren A.E., Erland A., Praveen K., Saxena A., Susan J., Murch B.C. Melatonin in plant signalling and behavior // Funct. Plant Biol. 2017. V. 45. P. 58. https://doi.org/10.1071/FP16384
  59. Zeng H., Bai Y., Wei Y., Reiter R.J., Shi H. Phytomelatonin as a central molecule in plant disease resistance // J. Exp. Bot. 2022. V. 73. P. 5874. https://doi.org/10.1093/jxb/erac111
  60. Samanta S., Roychoudhury A. Crosstalk of melatonin with major phytohormones and growth regulators in mediating abiotic stress tolerance in plants // V. South Afric. J. Bot. 2023. V. 163. P. 201. https://doi.org/10.1016/j.sajb.2023.10.040
  61. Khan M., Ali S., Manghwar H., Saqib S., Ullah F., Ayaz A., Zaman W. Melatonin function and crosstalk with other phytohormones under normal and stressful conditions // Genes. 2022. V. 13. P. 1699. https://doi.org/10.3390/genes13101699
  62. Arnao M.B., Hernandez-Ruiz J. Growth activity, rooting capacity, and tropism: three auxinic precepts fulfilled by melatonin // Acta Physiol. Plant. 2017. V. 39. P. 127. https://doi.org/10.1007/s11738-017-2428-3
  63. Wang L., Zhao Y., Reiter R.J., He C., Liu G., Lei Q., Zuo B., Zheng X.D., Li, Q., Kong J. Changes in melatonin levels in transgenic Micro-Tom tomato overexpressing ovine AANAT and ovine HIOMT genes // J. Pineal Res. 2014. V. 56. P. 134. https://doi.org/10.1111/jpi.12105
  64. Chen Q., Qi W.B., Reiter R.J., Wei W., Wang B.M. Exogenously applied melatonin stimulates root growth and raises endogenous indole acetic acid in roots of etiolated seedlings of Brassica juncea // J. Plant Physiol. 2009. V. 166. P. 324. https://doi.org/10.1016/j. jplph.2008.06.002
  65. Hernández-Ruiz J., Cano A., Arnao M.B. Melatonin acts as a growth-stimulating compound in some monocot species // J. Pineal Res. 2005. V. 39. P. 137. https://doi.org/10.1111/j.1600-079X.2005.00226.x
  66. Tan X., Long W., Zeng L., Ding X., Cheng Y., Zhang X., Zou X. Melatonin-induced transcriptome variation of rapeseed seedlings under salt stress // Int. J. Mol. Sci. 2019. V. 20. P. 5355. https://doi.org/10.3390/ijms20215355
  67. Liang C., Li A., Yu H., Li W., Liang C., Guo S., Zhang R., Chu C. Melatonin regulates root architecture by modulating auxin response in rice // Front. Plant Sci. 2017. V. 8. P. 134. https://doi.org/10.3389/fpls.2017.00134
  68. Weeda S., Zhang N., Zhao X., Ndip G., Guo Y., Buck G.F., Fu C., Ren S. Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems // PLoS One. 2014. V. 9. e93462. https://doi.org/10.1371/journal.pone.0093462 (73)
  69. Pelagio-Flores R., Muñoz Parra E., Ortíz-Castro R., López-Bucio J. Melatonin regulates Arabidopsis root system architecture likely acting independently of auxin signaling // J. Pineal Res. 2012. V. 53. P. 279. https://doi.org/10.1111/j.1600-079X.2012.00996.x
  70. Yang L., You J., Li J., Wang Y., Chan Z. Melatonin promotes Arabidopsis primary root growth in an IAA-dependent manner // J. Exp. Bot. 2021. V. 72. P. 5599. https://doi.org/10.1093/jxb/erab196
  71. Mao J., Niu C., Li K., Chen S., Tahir M.M., Han M., Zhang D. Melatonin promotes adventitious root formation in apple by promoting the function of MdWOX11 // BMC Plant Biol. 2020. V. 20. P. 536. https://doi.org/10.1186/s12870-020-02747-z
  72. Zia S.F., Berkowitz O., Bedon F., Whelan J., Franks A.E., Plummer K.M. Direct comparison of Arabidopsis gene expression reveals different responses to melatonin versus auxin // BMC Plant Biol. 2019. V. 19. P. 567. https://doi.org/10.1186/s12870-019-2158-3
  73. Shi H., Zhang S., Lin D., Wei Y., Yan Y., Liu G., Reiter R.J., Chan Z. Zinc finger of Arabidopsis thaliana is involved in melatonin-mediated auxin signaling through interacting INDETERMINATE DOMAIN15 and INDOLE-3-ACETICACID17 // J. Pineal Res. 2018. V. 65. e12494.
  74. Shi H., Reiter R.J., Tan D.X., Chan Z. INDOLE-3-ACETIC ACID INDUCIBLE 17 positively modulates natural leaf senescence through melatonin-mediated pathway in Arabidopsis // J. Pineal Res. 2015. V. 58. P. 26. https://doi.org/10.1111/jpi.12188
  75. Banerjee A., Roychoudhury A. Melatonin application reduces fluoride uptake and toxicity in rice seedlings by altering abscisic acid, gibberellin, auxin and antioxidant homeostasis // Plant Physiol. Biochem. 2019. V. 145. P. 164. https://doi.org/10.1016/j.plaphy.2019.10.033
  76. Moussa H.R., Algamal S.M.A. Does exogenous application of melatonin ameliorate boron toxicity in spinach plants? // Int. J. Veg. Sci. 2017. V. 23. P. 233. https://doi.org/10.3390/molecules25225359
  77. Ahmad S., Wang G.Y., Muhammad I., Farooq S., Kamran M., Ahmad I., Zeeshan M., Javed T., Ullah S., Huang J.H., Zhou X.B. Application of melatonin-mediated modulation of drought tolerance by regulating photosynthetic efficiency, chloroplast ultrastructure, and endogenous hormones in maize // Chem. Biol. Technol. Agric. 2022. V. 9. P. 5. https://doi.org/10.1186/s40538-021-00272-1с
  78. Zhang H.J., Zhang N., Yang R.C., Wang L., Sun Q.Q., Li D.B., Cao Y.Y., Weeda S., Zhao B., Ren S., Guo Y.D. Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA- interaction in cucumber (Cucumis sativus L.) // J. Pineal Res. 2014. V. 57. P. 269. https://doi.org/10.1111/jpi.12167
  79. Chen L., Lu B., Liu L., Duan W., Jiang D., Li J., Zhang K., Sun H., Zhang Y., Li C., Bai Z. Melatonin promotes seed germination under salt stress by regulating ABA and GA(3) in cotton (Gossypium hirsutum L.) // Plant Physiol. Biochem. 2021. V. 162. P. 506.
  80. Ahmad I., Song X., Hussein I.M.E., Jamal Y., Younas M.U., Zhu G., Zhou G., Ali A.Y. The role of melatonin in plant growth and metabolism, and its interplay with nitric oxide and auxin in plants under different types of abiotic stress // Front Plant Sci. 2023. V. 14. P. 1108507. https://doi.org/10.3389/fpls.2023.1108507.
  81. Zhang J., Shi Y., Zhang X., Du H., Xu B., Huang B. Melatonin suppression of heatinduced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne L.) // Environ. Exp. Bot. 2017. V. 138. P. 36. https://doi.org/10.1016/j.envexpbot.2017.02.012
  82. Tan X.‐L., Fan Z.‐Q., Kuang J.‐F., Lu W.-J., Reiter R.J., Lakshmanan P., Su X-G., Zhou J., Chen J.Y., Shan W. Melatonin delays leaf senescence of Chinese flowering cabbage by suppressing ABFs-mediated abscisic acid biosynthesis and chlorophyll degradation // J. Pineal Res. 2019. V. 67. e12570. https://doi.org/10.1111/jpi.12570
  83. Li C., Tan D-X., Liang D., Chang C., Jia D., Ma F. Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress // J. Exp. Bot. 2015. V. 66. P. 669. https://doi.org/10.1093/jxb/eru476 2014
  84. Fu J., Wu Y., Miao Y., Yamei Xu Y., Zhao E., Wang J., Sun H., Liu Q., Xue Y., Xu Y., Hu T. Improved cold tolerance in Elymus nutans by exogenous application of melatonin may involve ABA-dependent and ABA-independent pathways // Scientif. Rep. 2017. V. 7. P. 39865. https://doi.org/10.1038/srep39865
  85. Li X., Tan D.X., Jiang D., Liu F. Melatonin enhances cold tolerance in drought-primed wild-type and abscisic acid-deficient mutant barley // J. Pineal Res. 2016. V. 61. P. 328. https://doi.org/10.1111/jpi.12350
  86. Zhao H., Zhang K., Zhou X., Xi L., Wang Y., Xu H., Pan T., Zou Z. Melatonin alleviates chilling stress in cucumber seedlings by up-regulation of CsZat12 and modulation of polyamine and abscisic acid metabolism // Sci. Rep. 2017. V. 7. P. 4998. https://doi.org/10.1038/s41598-017-05267-3
  87. Zhao D., Wang H., Chen S., Yu D., Reiter R.J. Phytomelatonin: an emerging regulator of plant biotic stress resistance // Trends Plant Sci. 2020. V. 26. P. 70. https://doi.org/10.1016/j.tplants.2020.08.009
  88. Park S., Byeon Y., Back K. Functional analyses of three ASMT gene family members in rice plants // J. Pineal Res. 2013. V. 55. P. 409. https://doi.org/10.1111/jpi.12088
  89. Chen Q., Arnao M.B. Phytomelatonin: an emerging new hormone in plants // J. Exp. Bot. 2022. V. 73. P. 5773. https://doi.org/10.1093/jxb/erac307
  90. Arnao M., Hernandez R.J. Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves // J. Pineal Res. 2009. V. 46. P. 58. https://doi.org/10.1111/j.1600-079X.2008.00625.x
  91. Ma X., Zhang J., Burgess O., Rossi S., Huang B. Interactive effects of melatonin and cytokinin on alleviating drought induced leaf senescence in creeping bentgrass (Agrostis stolonifera) // Environ. Exp. Bot. 2018. V. 145. P. 1. https://doi.org/10.1016/j.envexpbot.2017.10.010
  92. Bychkov I.A., Andreeva A.A., Kudryakova N.V., Kusnetsov V.V. Cytokinin modulates responses to phytomelatonin in Arabidopsis thaliana under high light stress // Int. J. Mol. Sci. 2023. V. 24. P. 738. https://doi.org/10.3390/ijms24010738
  93. Sliwiak J., Sikorski M., Jaskolski M. PR-10 proteins as potential mediators of melatonin-cytokinin cross-talk in plants: crystallographic studies of LlPR-10.2B isoform from yellow lupine // FEBS J. 2018. V. 285. P. 1907. https://doi.org/10.1111/febs.14455
  94. Fu J., Zhang S., Jiang H., Zhang H., Gao H., Yang P., Hu T. Melatonin-induced cold and drought tolerance is regulated by brassinosteroids and hydrogen peroxide signaling in perennial ryegrass // Environ. Exp. Bot. 2022. V. 196. P. 104815. https://doi.org/10.1016/j.envexpbot.2022.104815
  95. Hwang O.J., Back K. Melatonin is involved in skotomorphogenesis by regulating brassinosteroid biosynthesis in rice plants // J. Pineal Res. 2018. V. 65. e12495. https://doi.org/10.1111/jpi.12495
  96. Hwang O.J., Back K. Melatonin deficiency confers tolerance to multiple abiotic stresses in rice via decreased brassinosteroid levels // Int. J. Mol. Sci. 2019. V. 20. P. 5173. https://doi.org/10.3390/ijms20205173
  97. Xiong F., Zhuo F., Reiter R.J., Wang L., Wei Z., Deng K., Song Y., Qanmber G., Feng L., Yang Z., Li F., Ren M. Hypocotyl elongation inhibition of melatonin is involved in repressing brassinosteroid biosynthesis in Arabidopsis // Front. Plant Sci. 2019. V. 10. P. 1082. https://doi.org/10.3389/fpls.2019.01082
  98. Jahan M.S., Shu S., Wang Y., Hasan M.M., El-Yazied A.A., Alabdallah N.M., Hajjar D., Altaf M.A., Sun J., Guo S. Melatonin pretreatment confers heat tolerance and repression of heat-induced senescenece in tomato through the modulation of ABA-and GA-mediated pathways // Front. Plant Sci. 2021. V. 112. P. 65095. https://doi.org/10.3389/fpls.2021.650955
  99. Lv Y., Pan J., Wang H., Reiter R.J., Li X., Mou Z., Zhang J., Yao Z., Zhao D., Yu D. Melatonin inhibits seed germination by crosstalk with abscisic acid, gibberellin, and auxin in Arabidopsis // J. Pineal Res. 2021. V. 70. e12736. https://doi.org/10.1111/jpi.12736
  100. Mou Z., Wang H., Chen S., Reiter R.J., Zhao D. Molecular mechanisms and evolutionary history of phytomelatonin in flowering // J. Exp. Bot. 2022. V. 73. P. 5840. https://doi.org/10.1093/jxb/erac164
  101. Byeon Y., Back K. An increase in melatonin in transgenic rice causes pleiotropic phenotypes, including enhanced seedling growth, delayed flowering, and low grain yield // J. Pineal Res. 2014. V. 56. P. 408. https://doi.org/10.1111/jpi.12129
  102. Zhang Z., Hu Q., Liu Y., Cheng P., Cheng H., Liu W., Xing X., Guan Z., Fang W., Chen S., Jiang J., Chen F. Strigolactone represses the synthesis of melatonin, thereby inducing floral transition in Arabidopsis thaliana in an FLC -dependent manner // J. Pineal Res. 2019. V. 67. e12582. https://doi.org/10.1111/jpi.12582
  103. Shi H., Wei Y., Wang Q., Reiter R.J., He C. Melatonin mediates the stabilization of DELLA proteins to repress the floral transition in Arabidopsis // J. Pineal Res. 2016. V. 60. P. 373. https://doi.org/10.1111/jpi.12320
  104. Yang J., Duan G., Li C., Liu L., Han G., Zhang Y., Wang C. The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses // Front. Plant Sci. 2019. V. 10. P. 1349. https://doi.org/10.3389/fpls.2019.01349
  105. Ai Y., Zhu Z. Melatonin antagonizes jasmonate-triggered anthocyanin biosynthesis in Arabidopsis thaliana // J. Agric. Food. Chem. 2018. V. 66. P. 5392. https://doi.org/10.1021/acs.jafc.8b01795
  106. Shi H., Jiang C., Ye T., Tan D.X., Reiter R.J., Zhang H., Liu R., Chan Z. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodondactylon (L). Pers.] by exogenous melatonin // J. Exp. Bot. 2015 V. 66. P. 681. https://doi.org/10.1093/jxb/eru373
  107. Hu Z., Fu Q., Zheng J., Zhang A., Wang H. Transcriptomic and metabolomic analyses reveal that melatonin promotes melon root development under copper stress by inhibiting jasmonic acid biosynthesis // Hortic. Res. 2020. V. 7. P. 79. https://doi.org/10.1038/s41438-020-0293-5
  108. Li H., Guo Y.L., Lan Z., Kai X., Chang J.J., Ahammed G.J., Ma J.X., Wei C., Zhang X. Methyl jasmonate mediates melato-nininduced cold tolerance of grafted watermelon plants // Hortic. Res. 2021. V. 8. P. 57. https://doi.org/10.1038/s41438-021-00496-0
  109. Imran M., Khan M.A., Shahzad R., Bilal S., Khan M., Yun B.W., Khan A.L., Lee I.J. Melatonin ameliorates thermotolerance in soybean seedling through balancing redox homeostasis and modulating antioxidant defense, phytohormones and polyamines biosynthesis // Molecules. 2021. V. 26. P. 5116. https://doi.org/10.3390/molecules26175116
  110. Park H.S., Kazerooni E.A., Kang S.M., Al-Sadi A.M., Lee I.J. Melatonin enhances the tolerance and recovery mechanisms in Brassica juncea (L.) Czern. under saline conditions // Front. Plant Sci. 2021. V. 12. P. 593717. https://doi.org/10.3389/fpls.2021.593717
  111. Kaya C., Sarıoglu A., Ashraf M., Alyemeni M.N., Ahmad P. The combined supplementation of melatonin and salicylic acid effectively detoxifies arsenic toxicity by modulating phytochelatins and nitrogen metabolism in pepper plants // Environ. Pol. 2022. V. 297. P. 118727. https://doi.org/10.1016/j.envpol.2021.118727
  112. Hernandez-Ruiz J., Arnao M.B. Relationship of melatonin and salicylic acid in biotic/abiotic plant stress responses // Agronomy. 2018. V. 8. P. 33. https://doi.org/10.3390/agron omy80 40033
  113. Lee H.Y., Byeon Y., Back K. Melatonin as a signal molecule triggering defense responses against pathogen attack in Arabidopsis and tobacco // J. Pineal Res. 2014. V. 57. P. 262. https://doi.org/10.1111/jpi.12165
  114. Lee H.Y., Byeon Y., Tan D.-X., Reiter R.J., Back K. Arabidopsis serotonin N-acetyltransferase knockout mutant plants exhibit decreased melatonin and salicylic acid levels resulting in susceptibility to an avirulent pathogen // J. Pineal Res. 2015. V. 58. P. 291. https://doi.org/10.1111/jpi.12214
  115. Yue L., Kang Y., Zhong M., Kang D., Zhao P., Chai X., Yang X. Melatonin delays postharvest senescence through suppressing the inhibition of BrERF2/BrERF109 on flavonoid biosynthesis in flowering Chinese cabbage // Int. J. Mol. Sci. 2023. V. 24. P. 2933. https://doi.org/10.3390/ijms24032933
  116. Sun Q.Q., Zhang N., Wang J., Zhang H.J., Li D.B., Shi J., Li R., Weeda S., Zhao B., Ren S., Guo Y.D. Melatonin promotes ripening and improves quality of tomato fruit during postharvest life // J. Exp. Bot. 2015. V. 66. P. 657. https://doi.org/10.1093/jxb/eru332
  117. Yang L., Bu S., Zhao S., Wang N., Xiao J., He F., Gao X. Transcriptome and physiological analysis of increase in drought stress tolerance by melatonin in tomato // PLoS ONE. 2022. V. 17. e0267594. https://doi.org/10.1371/journal.pone.0267594
  118. Xu L., Xiang G., Sun Q., Ni Y., Jin Z., Gao S., Yao Y. Melatonin enhances salt tolerance by promoting MYB108A-mediated ethylene biosynthesis in grape vines // Hortic. Res. 2019. V. 6. P. 114. https://doi.org/10.1038/s41438-019-0197-4
  119. Zhang H., Wang L., Shi K., Shan D., Zhu Y., Wang C., Bai Y., Yan T., Zheng X., Kong J. Apple tree flowering is mediated by low level of melatonin under the regulation of seasonal light Signal // J. Pineal Res. 2019. V. 66. e12551. https://doi.org/10.1111/jpi.12551
  120. Ma W., Xu L., Gao S., Lyu X., Cao X., Yao Y. Melatonin alters the secondary metabolite profile of grape berry skin by promoting VvMYB14-mediated ethylene biosynthesis // Hortic. Res. 2021. V. 8. P. 43. https://doi.org/10.1038/s41438-021-00478-2
  121. Ludwing-Müller J., Lüthen H. From facts and false routes: how plant hormone research developed // J. Plant Growth Regul. 2015. V. 34. P. 697. https://doi.org/10.1007/s00344-015-9544-3
  122. Khanna K., Bhardwaj R., Alam P., Reiter R.J., Ahmad P. Phytomelatonin: A master regulator for plant oxidative stress management // Plant Physiol. Biochem. 2023. V. 196. P. 260. https://doi.org/10.1016/j.plaphy.2023.01.035
  123. Hardeland R. Melatonin: Another Phytohormone? // Res. Rev: J. Bot. Sci. 2016. V. 5.
  124. Sun C., Liu L., Wang L., Li B., Jin C., Lin X. Melatonin: A master regulator of plant development and stress responses // J. Integr. Plant Biol. 2021. V. 63. P. 126. https://doi.org/10.1111/jipb.12993
  125. Sharma P., Thakur N., Mann N.A., Umar A. Melatonin as plant growth regulator in sustainable agriculture // Scientia Horticulturae. 2024. V. 323. P. 112421. https://doi.org/10.1016/j.scienta.2023.112421
  126. Arnao M.B., Hernandez-Ruiz J. Melatonin: a new plant hormone and/or a plant master regulator? // Trends Plant Sci. 2019. V. 24. P. 38. https://doi.org/10.1016/j.tplants.2018.10.010
  127. Li H., Chang J., Zheng J., Dong Y., Liu Q., Yang X., Wei C., Zhang Y., Ma J., Zhang X. Local melatonin application induces cold tolerance in distant organs of Citrullus lanatus L. via long distance transport // Sci. Rep. 2017. V. 7. P. 40858. https://doi.org/10.1038/srep40858

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of melatonin synthesis in animals and phytomelatonin in plants. Melatonin synthesis in animals follows one standard pathway (red arrows). PMT synthesis is more complex, one pathway of tryptophan conversion to serotonin and two pathways of serotonin conversion to PMT (green arrows) have been proven. There is some evidence of tryptophan conversion to serotonin by the animal pathway (green dotted arrows). At least 6 enzymes participate in the reactions: TDC – tryptophan decarboxylase, TPH – tryptophan-5-hydroxylase, T5H – tryptamine-5-hydroxylase, SNAT – serotonin-N-acetyltransferase, ASMT – acetylserotonin methyltransferase, COMT – serotonin-O-methyltransferase of caffeic acid.

Download (427KB)
3. Fig. 2. Phytomelatonin – a new phytohormone. There are requirements for biologically active compounds that can be classified as phytohormones [121], however, some of the requirements, in our opinion, are overstated, and PMT can be considered a new phytohormone based on the following features: 1) the PMT receptor is known; 2) it is a pleiotropic molecule that participates in the regulation of many physiological processes in plants; 3) the action of PMT depends on the exogenous or endogenous concentration of the regulator; 4) the pathways of its biosynthesis and, partially, catabolism are known; 5) it is assumed that PMT is transported through the xylem; 6) PMT interacts with all the main phytohormones in the regulation of various physiological processes, including auxins, CK, GA, BS, ABA, ethylene, SA, jasmonates and strigolactones.

Download (1MB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».