Фитомелатонин как элемент гормональной системы растений
- Authors: Кузнецов В.В.1, Бычков И.А.1, Кудрякова Н.В.1
-
Affiliations:
- Федеральное государственное бюджетное научное учреждение науки Институт физиологии растений им. К.А. Тимирязева Российской академии наук
- Issue: Vol 71, No 4 (2024)
- Pages: 377-397
- Section: ОБЗОРЫ
- URL: https://journals.rcsi.science/0015-3303/article/view/268061
- DOI: https://doi.org/10.31857/S0015330324040012
- EDN: https://elibrary.ru/MOJIKN
- ID: 268061
Cite item
Abstract
Мелатонин (N-ацетил-5-метокситриптамин), гормон животных, антиоксидант и регуляторная молекула, привлекает все большее внимание биологов. Мелатонин, открытый в растениях в 1995 г. и позднее названный фитомелатонином (ФМТ), регулирует многие этапы онтогенеза растений, начиная от прорастания семян и заканчивая процессом старения. ФМТ является одним из наиболее мощных антиоксидантов растительной клетки. Многочисленные экспериментальные данные показывают, что ФМТ повышает устойчивость растений в условиях действия как абиотических, так и биотических стрессов. В регуляции физиологических процессов он взаимодействует практически со всеми известными в настоящее время фитогормонами. Сейчас довольно хорошо изучен биосинтез ФМТ, его полифункциональная активность, открыт первый рецептор и некоторые компоненты цепи его сигналинга. Все это позволяет считать ФМТ новым гормоном растений.
Keywords
Full Text

About the authors
В. В. Кузнецов
Федеральное государственное бюджетное научное учреждение науки Институт физиологии растений им. К.А. Тимирязева Российской академии наук
Email: nvkudryakova@mail.ru
Russian Federation, Москва
И. А. Бычков
Федеральное государственное бюджетное научное учреждение науки Институт физиологии растений им. К.А. Тимирязева Российской академии наук
Email: nvkudryakova@mail.ru
Russian Federation, Москва
Н. В. Кудрякова
Федеральное государственное бюджетное научное учреждение науки Институт физиологии растений им. К.А. Тимирязева Российской академии наук
Author for correspondence.
Email: nvkudryakova@mail.ru
Russian Federation, Москва
References
- Lerner A.B., Case J.D., Takahashi Y., Lee T.H., Mori W. Isolation of melatonin, the pineal gland factor that lightens melanocytes // J. Amer. Chem. Soc. 1958. V. 80. P. 2587.
- Tan D.X., Zheng X., Kong J., Manchester L.C., Hardeland R., Kim S.J., Xu X., Reiter R.J. Fundamental issues related to the origin of melatonin and melatonin isomers during evolution: relation to their biological functions // Int. J. Mol. Sci. 2014. V. 15. P. 15858. https://doi.org/10.3390/ijms150915858
- Zhao D., Yu Y., Shen Y., Liu Q., Zhao Z., Sharma R., Reiter R.J. Melatonin synthesis and function: evolutionary history in animals and plants // Front. Endocrinol. 2019. V. 10. P. 249. https://doi.org/10.3389/fendo.2019.00249
- Tan D.X., Manchester L.C., Liu X., Rosales-Corral S.A., Acuna-Castroviejo D., Reiter R.J. Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes // J. Pineal Res. 2013. V. 54. P. 127. https://doi.org/10.1111/jpi.12026
- Dubbels R., Reiter R.J., Klenke E., Goebel A., Schnakenberg E., Ehlers C. Schiwara H.W., Schloot W. Melatonin in edible plants identified by radioimmunoas-liquid chromatography-mass spectrometry // J. Pineal Res. 1995. V. 18. P. 28. https://doi.org/10.1111/j.1600-079x.1995.tb00136.x
- Hattori A., Migitaka H., Iigo M., Itoh M., Yamamoto K., Ohtani-Kaneko R., Hara M., Suzuki T., Reiter R.J. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates // Biochem. Mol. Biol. Int. 1995. V. 35. P. 627.
- Murch S.J., Erland L.A.E. A Systematic review of melatonin in plants: an example of evolution of literature // Front. Plant Sci. 2021. V. 12. P. 683047. https://doi.org/10.3389/fpls.2021.683047
- Arnao M.B., Hernandez-Ruiz J. Melatonin in flowering, fruit set and fruit ripening // Plant Reprod. 2020. V. 33. P. 77. https://doi.org/10.1007/s00497-020-00388-8
- Arnao M.B. Phytomelatonin: discovery, content, and role in plants // Adv. Bot. 2014. V. 2014. Article 815769. https://doi.org/10.1155/2014/815769
- Back K. Melatonin metabolism, signaling and possible roles in plants // Plant J. 2021. V. 105. P. 376. https://doi.org/10.1111/tpj.14915
- Hardeland R. Melatonin in plants and other phototrophs: advances and gaps concerning the diversity of functions // J. Exp. Bot. 2015. V. 66. P. 627. https://doi.org/10.1093/jxb/eru386
- Kanwar M.K., Yu J., Zhou J. Phytomelatonin: Recent advances and future prospects // J. Pineal Res. 2018. V. 65. e12526. https://doi.org/10.1111/jpi.12526
- Tan D.X., Chen L.D., Poeggeler B., Manchester L., Reiter R.J. Melatonin: a potent, endogenous hydroxyl radical scavenger // Endocr. J. 1993. V. 1. P. 57.
- Arnao M.B., Hernández-Ruiz J. Melatonin and reactive oxygen and nitrogen species: a model for the plant redox network // Melatonin Res. 2019. V. 2. P. 152. https://doi.org/10.1111/plb.13202
- Mannino G., Pernici C., Serio G., Gentile C., Bertea C.M. Melatonin and phytomelatonin: chemistry, biosynthesis, metabolism, distribution and bioactivity in plants and animals // Int. J. Mol. Sci. 2021. V. 22. P. 9996. https://doi.org/10.3390/ijms22189996
- Tan D.X., Manchester L.C., Terron M.P., Flores L.J., Reiter R.J. One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? // J. Pineal Res. 2007. V. 42. P. 28. https://doi.org/10.1111/j.1600-079X.2006.00407.x.
- Reiter R.J., Poeggeler B., Tan D.-X., Chen L.-D., Manchester L.C., Guerrero J.M. Antioxidant capacity of melatonin: a novel action not requiring a receptor // Neuroendoc. Lett. 1993. V. 15. P. 103. https://doi.org/10.1210/edrv-12-2-151
- Back K., Tan D.-X., Reiter R.J. Melatonin biosynthesis in plants: Multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts // J. Pineal. Res. 2016. V. 61. P. 426. https://doi.org/10.1111/jpi.12364
- Yang X., Chen J., Ma Y., Huang M., Qiu T., Bian H., Han N., Wang J. Function, mechanism, and application of plant melatonin: An update with a focus on the cereal crop, barley (Hordeum vulgare L.) // Antioxidants. 2022. V. 11. P. 634. https://doi.org/10.3390/antiox11040634
- Murch S.J., KrishnaRaj S., Saxena P.K. Tryptophan is a precursor for melatonin and serotonin biosynthesis in in vitro regenerated St. John’s wort (Hypericum perforatum L. cv. Anthos) plants // Plant Cell Rep. 2000. V. 19. P. 698. https://doi.org/10.1007/s002990000206
- Liu G., Hu Q., Zhang X., Jiang J., Zhang Y., Zhang Z. Melatonin biosynthesis and signal transduction in plants in response to environmental conditions // J. Exp. Bot. 2022. V. 73. P. 5818. https://doi.org/10.1093/jxb/erac196.
- Murch S.J., Saxena P.K. A melatonin-rich germplasm line of St John’s wort (Hypericum perforatum L.). // J. Pineal Res. 2006. V. 41. P. 284. https://doi.org/10.1111/j.1600-079X.2006.00367.x.
- Zhang Z., Zhang Y. Melatonin in plants: what we know and what we don’t // Food Quality and Safety. 2021. V. 5. P. 1. https://doi.org/10.1093/fqsafe/fyab009
- Tan D.X., Reiter R.J. An evolutionary view of melatonin synthesis and metabolism related to its biological functions in plants // J. Exp. Bot. 2020. V. 71. P. 4677. https://doi.org/10.1093/jxb/eraa235
- Ye T., Yin X., Yu L., Zheng S.J., Cai W.J., Wu Y., Feng Y.Q. Metabolic analysis of the melatonin biosynthesis pathway using chemical labeling coupled with liquid chromatography-mass spectrometry // J. Pineal Res. 2019. V. 66. e12531. https://doi.org/10.1111/jpi.12531
- Lee K., Back K. Melatonin-deficient rice plants show a common semidwarf phenotype either dependent or independent of brassinosteroid biosynthesis // J. Pineal Res. 2019. V. 66. e12537. https://doi.org/10.1111/jpi.12537
- Kang K., Kong K., Park S., Natsagdor U., Kim Y.S., Back K. Molecular cloning of a plant N-acetylserotonin methyltransferase and its expression characteristics in rice // J. Pineal Res. 2011. V. 50. P. 304. https://doi.org/10.1111/j.1600-079X.2010.00841.x
- Zhang T., Wang J., Sun Y., Zhang L., Zheng S. Versatile roles of melatonin in growth and stress tolerance in plants // J. Plant Growth Regul. 2022. V. 41. P. 507. https://doi.org/10.1007/s00344-021-10317-2
- Gao Y., Chen H., Chen D., Hao G. Genetic and evolutionary dissection of melatonin response signaling facilitates the regulation of plant growth and stress responses // J. Pineal Res. 2023. e12850. https://doi.org/10.1111/jpi.12850
- Cai S.Y., Zhang Y., Xu Y.P., Qi Z.Y., Li M.Q., Ahammed G.J., Xia X.J., Shi K., Zhou Y.H., Reiter R.J., Yu J.Q., Zhou J. HsfA1a upregulates melatonin biosynthesis to confer cadmium tolerance in tomato plants // J. Pineal Res. 2017. V. 62. https://doi.org/10.1111/jpi.12387
- Wei Y., Liu G., Bai Y., Xia F., He C., Shi H., Foyer C. Two transcriptional activators of N-acetylserotonin O-methyltransferase 2 and melatonin biosynthesis in cassava // J. Exp. Bot. 2017. V. 68. P. 4997. https://doi.org/10.1093/jxb/erx305
- Wei Y., Chang Y., Zeng H., Liu G., He C., Shi H. RAV transcription factors are essential for disease resistance against cassava bacterial blight via activation of melatonin biosynthesis genes // J. Pineal Res. 2018. V. 64. e12454. https://doi.org/10.1111/jpi.12454
- Bai Y., Wei Y., Yin H., Hu W., Cheng X., Guo J., Dong Y., Zheng L., Xie H., Zeng H., Reiter R.J., Shi H. PP2C1 fine-tunes melatonin biosynthesis and phytomelatonin receptor PMTR1 binding to melatonin in cassava // J. Pineal Res. 2022. V. 73. e12804. https://doi.org/10.1111/jpi.12804
- Zheng X., Tan D., Allan A.C., Zuo B., Zhao Y., Reiter R.J., Wang L., Wang Z., Guo Y., Zhou J., Shan D., Li Q., Han Z., Kong J. Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress // Sci. Rep. 2017. V. 7. P. 41236. https://doi.org/10.1038/srep41236
- Wang L., Feng C., Zheng X., Guo Y., Zhou F., Shan D., Liu X., Kong J. Plant mitochondria synthesize melatonin and enhance the tolerance of plants to drought stress // J. Pineal Res. 2017. V. 63. e12429. https://doi.org/10.1111/jpi.12429
- Tan D.-X., Manchester L.C., Mascio P.D., Martinez G.R., Prado F.M., Reiter R.J. Novel rhythms of N-1-acetyl-N-2-formyl-5-methoxykynuramine and its precursor melatonin in water hyacinth: importance for phytoremediation // FASEB J. 2007. V. 21. P. 1724. https://doi.org/10.1096/fj.06-7745com
- Hardeland R., Tan D.-X., Reiter R.J. Kynuramines, metabolites of melatonin and other indoles: the resurrection of an almost forgotten class of biogenic amines // J. Pineal Res. 2009. V. 47. P. 109. https://doi.org/10.1111/j.1600-079X.2009.00701.x
- Okazaki M., Higuchi K., Aouini A., Ezura H. Lowering intercellular melatonin levels by transgenic analysis of indoleamine 2,3-dioxygenase from rice in tomato plants // J. Pineal Res. 2010. V. 49. P. 239. https://doi.org/10.1111/j.1600-079X.2010.00788.x
- Byeon Y., Back K. Molecular cloning of melatonin 2-hydroxylase responsible for 2-hydroxymelatonin production in rice (Oryza sativa) // J. Pineal Res. 2015. V. 58. P. 343. https://doi.org/10.1111/jpi.12220
- Shah A.A., Ahmed S., Yasin N.A. 2-Hydroxymelatonin induced nutritional orchestration in Cucumis sativus under cadmium toxicity: modulation of non-enzymatic antioxidants and gene expression // Int. J. Phytoremed. 2019. V. 22. P. 1. https://doi.org/10.1080/15226514.2019.1683715
- Wei J., Li D-X., Zhang J-R., Shan C., Rengel Z., Song Z-B., Qi Chen Q. Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana // J. Pineal Res. 2018. e12500. https://doi.org/10.1111/jpi.12500
- Lee H.Y., Back K. The phytomelatonin receptor (PMRT1) Arabidopsis Cand2 is not a bona fide G protein–coupled melatonin receptor // Melatonin Res. 2020. V. 3. P. 177. https://doi.org/10.32794/mr11250055
- Khan D., Cai N., Zhu W., Li L., Guan M., Pu X., Chen Q. The role of phytomelatonin receptor 1-mediated signaling in plant growth and stress response // Front. Plant Sci. 2023. V. 14. P. 1142753. https://doi.org/10.3389/fpls.2023.1142753
- Yin X., Bai Y.L., Gong C., Song W., Wu Y., Ye T., Feng Y.Q. The phytomelatonin receptor PMTR1 regulates seed development and germination by modulating abscisic acid homeostasis in Arabidopsis thaliana // J. Pineal. Res. 2022. V. 72. e12797. https://doi.org/10.1111/jpi.12797
- Kong M., Sheng T., Liang J., Ali Q., Gu Q., Wu H., Chen J., Liu J., Gao X. Melatonin and its homologs induce immune responses via receptors trP47363-trP13076 in Nicotiana benthamiana // Front. Plant Sci. 2021. V. 12. P. 1197. https://doi.org/10.3389/fpls.2021.691835
- Wang L.F., Lu K.K., Li T.T., Zhang Y., Guo J.X., Song R.F., Liu W.C. Maize PHYTOMELATONIN RECEPTOR1 functions in plant osmotic and drought stress tolerance // J. Exp. Bot. 2021. V. 73. P. 5961. https://doi.org/10.1093/jxb/erab553
- Bychkov I.A., Kudryakova N.V., Shugaev A.G., Kuznetsov Vl.V., Kusnetsov V.V. The melatonin receptor CAND2/PMTR1 is involved in the regulation of mitochondrial gene expression under photooxidative stress // Dokl. Biochem. Biophys. 2022. V. 502. P. 15. https://doi.org/10.1134/S1607672922010021
- Bychkov I., Kudryakova N., Pojidaeva E., Kusnetsov V. The melatonin receptor CAND2 is involved in the regulation of photosynthesis and chloroplast gene expression in Arabidopsis thaliana under photooxidative stress // Photosinth. 2021. V. 59. P. 683. https://doi.org/10.32615/ps.2021.061
- Park W.J. Have all of the phytohormonal properties of melatonin been verified? // Int. J. Mol. Sci. 2024. V. 25. P. 3550. https://doi.org/10.3390/ijms25063550
- Yu R., Zuo T., Diao P., Fu J., Fan Y., Wang Y., Zhao Q., Ma X., Lu W., Li A., Wang R., Yan F., Pu L., Niu Y., Wuriyanghan H. Melatonin enhances seed germination and seedling growth of Medicago sativa under salinity via a putative melatonin receptor MsPMTR1 // Front. Plant Sci. 2021. V. 12. P. 702875. https://doi.org/10.3389/fpls.2021.702875
- Yang Q., Peng Z., Ma W., Zhang S., Hou S., Wei J., Dong S., Yu X., Song Y., Gao W., Rengel Z., Huang L., Cui X., Chen Q. Melatonin functions in priming of stomatal immunity in Panax notoginseng and Arabidopsis thaliana // Plant Physiol. 2021. V. 87. P. 2837. https://doi.org/10.1093/plphys/kiab419.
- Skoog F., Miller C. Chemical regulation of growth and organ formation in plant tissues cultured in vitro // Sympos. Soc. Exptl. Biol. 1957. V. 11. P. 118.
- Hernández-Ruiz J., Cano A., Arnao M.B. Melatonin: A growth-stimulating compound present in lupin tissues // Planta. 2004. V. 220. P. 140. https://doi.org/10.1007/s00425-004-1317-3
- Arnao M.B., Hernandez-Ruiz J. The physiological function of melatonin in plants // Plant Signal. Beh. 2006. V. 1. P. 89.
- Arnao M.B., Hernandez-Ruiz J. Melatonin and its relationship to plant hormones // Ann. Bot. 2018. V. 121. P. 195. https://doi.org/10.1093/aob/mcx114
- Wang Y., Reiter R.J., Chan Z. Phytomelatonin: a universal abiotic stress regulator // J. Exp. Bot. 2018. V. 69. P. 963. https://doi.org/10.1093/jxb/erx473
- Sun H., Jia M., Wang Y., Lu H., Wang H. The complexity of melatonin and other phytohormones crosstalk with other signaling molecules for drought tolerance in horticultural crops // Scientia Horticulturae. 2023. V. 321. P. 112348. https://doi.org/10.1016/j.scienta.2023.112348
- Lauren A.E., Erland A., Praveen K., Saxena A., Susan J., Murch B.C. Melatonin in plant signalling and behavior // Funct. Plant Biol. 2017. V. 45. P. 58. https://doi.org/10.1071/FP16384
- Zeng H., Bai Y., Wei Y., Reiter R.J., Shi H. Phytomelatonin as a central molecule in plant disease resistance // J. Exp. Bot. 2022. V. 73. P. 5874. https://doi.org/10.1093/jxb/erac111
- Samanta S., Roychoudhury A. Crosstalk of melatonin with major phytohormones and growth regulators in mediating abiotic stress tolerance in plants // V. South Afric. J. Bot. 2023. V. 163. P. 201. https://doi.org/10.1016/j.sajb.2023.10.040
- Khan M., Ali S., Manghwar H., Saqib S., Ullah F., Ayaz A., Zaman W. Melatonin function and crosstalk with other phytohormones under normal and stressful conditions // Genes. 2022. V. 13. P. 1699. https://doi.org/10.3390/genes13101699
- Arnao M.B., Hernandez-Ruiz J. Growth activity, rooting capacity, and tropism: three auxinic precepts fulfilled by melatonin // Acta Physiol. Plant. 2017. V. 39. P. 127. https://doi.org/10.1007/s11738-017-2428-3
- Wang L., Zhao Y., Reiter R.J., He C., Liu G., Lei Q., Zuo B., Zheng X.D., Li, Q., Kong J. Changes in melatonin levels in transgenic Micro-Tom tomato overexpressing ovine AANAT and ovine HIOMT genes // J. Pineal Res. 2014. V. 56. P. 134. https://doi.org/10.1111/jpi.12105
- Chen Q., Qi W.B., Reiter R.J., Wei W., Wang B.M. Exogenously applied melatonin stimulates root growth and raises endogenous indole acetic acid in roots of etiolated seedlings of Brassica juncea // J. Plant Physiol. 2009. V. 166. P. 324. https://doi.org/10.1016/j. jplph.2008.06.002
- Hernández-Ruiz J., Cano A., Arnao M.B. Melatonin acts as a growth-stimulating compound in some monocot species // J. Pineal Res. 2005. V. 39. P. 137. https://doi.org/10.1111/j.1600-079X.2005.00226.x
- Tan X., Long W., Zeng L., Ding X., Cheng Y., Zhang X., Zou X. Melatonin-induced transcriptome variation of rapeseed seedlings under salt stress // Int. J. Mol. Sci. 2019. V. 20. P. 5355. https://doi.org/10.3390/ijms20215355
- Liang C., Li A., Yu H., Li W., Liang C., Guo S., Zhang R., Chu C. Melatonin regulates root architecture by modulating auxin response in rice // Front. Plant Sci. 2017. V. 8. P. 134. https://doi.org/10.3389/fpls.2017.00134
- Weeda S., Zhang N., Zhao X., Ndip G., Guo Y., Buck G.F., Fu C., Ren S. Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems // PLoS One. 2014. V. 9. e93462. https://doi.org/10.1371/journal.pone.0093462 (73)
- Pelagio-Flores R., Muñoz Parra E., Ortíz-Castro R., López-Bucio J. Melatonin regulates Arabidopsis root system architecture likely acting independently of auxin signaling // J. Pineal Res. 2012. V. 53. P. 279. https://doi.org/10.1111/j.1600-079X.2012.00996.x
- Yang L., You J., Li J., Wang Y., Chan Z. Melatonin promotes Arabidopsis primary root growth in an IAA-dependent manner // J. Exp. Bot. 2021. V. 72. P. 5599. https://doi.org/10.1093/jxb/erab196
- Mao J., Niu C., Li K., Chen S., Tahir M.M., Han M., Zhang D. Melatonin promotes adventitious root formation in apple by promoting the function of MdWOX11 // BMC Plant Biol. 2020. V. 20. P. 536. https://doi.org/10.1186/s12870-020-02747-z
- Zia S.F., Berkowitz O., Bedon F., Whelan J., Franks A.E., Plummer K.M. Direct comparison of Arabidopsis gene expression reveals different responses to melatonin versus auxin // BMC Plant Biol. 2019. V. 19. P. 567. https://doi.org/10.1186/s12870-019-2158-3
- Shi H., Zhang S., Lin D., Wei Y., Yan Y., Liu G., Reiter R.J., Chan Z. Zinc finger of Arabidopsis thaliana is involved in melatonin-mediated auxin signaling through interacting INDETERMINATE DOMAIN15 and INDOLE-3-ACETICACID17 // J. Pineal Res. 2018. V. 65. e12494.
- Shi H., Reiter R.J., Tan D.X., Chan Z. INDOLE-3-ACETIC ACID INDUCIBLE 17 positively modulates natural leaf senescence through melatonin-mediated pathway in Arabidopsis // J. Pineal Res. 2015. V. 58. P. 26. https://doi.org/10.1111/jpi.12188
- Banerjee A., Roychoudhury A. Melatonin application reduces fluoride uptake and toxicity in rice seedlings by altering abscisic acid, gibberellin, auxin and antioxidant homeostasis // Plant Physiol. Biochem. 2019. V. 145. P. 164. https://doi.org/10.1016/j.plaphy.2019.10.033
- Moussa H.R., Algamal S.M.A. Does exogenous application of melatonin ameliorate boron toxicity in spinach plants? // Int. J. Veg. Sci. 2017. V. 23. P. 233. https://doi.org/10.3390/molecules25225359
- Ahmad S., Wang G.Y., Muhammad I., Farooq S., Kamran M., Ahmad I., Zeeshan M., Javed T., Ullah S., Huang J.H., Zhou X.B. Application of melatonin-mediated modulation of drought tolerance by regulating photosynthetic efficiency, chloroplast ultrastructure, and endogenous hormones in maize // Chem. Biol. Technol. Agric. 2022. V. 9. P. 5. https://doi.org/10.1186/s40538-021-00272-1с
- Zhang H.J., Zhang N., Yang R.C., Wang L., Sun Q.Q., Li D.B., Cao Y.Y., Weeda S., Zhao B., Ren S., Guo Y.D. Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA- interaction in cucumber (Cucumis sativus L.) // J. Pineal Res. 2014. V. 57. P. 269. https://doi.org/10.1111/jpi.12167
- Chen L., Lu B., Liu L., Duan W., Jiang D., Li J., Zhang K., Sun H., Zhang Y., Li C., Bai Z. Melatonin promotes seed germination under salt stress by regulating ABA and GA(3) in cotton (Gossypium hirsutum L.) // Plant Physiol. Biochem. 2021. V. 162. P. 506.
- Ahmad I., Song X., Hussein I.M.E., Jamal Y., Younas M.U., Zhu G., Zhou G., Ali A.Y. The role of melatonin in plant growth and metabolism, and its interplay with nitric oxide and auxin in plants under different types of abiotic stress // Front Plant Sci. 2023. V. 14. P. 1108507. https://doi.org/10.3389/fpls.2023.1108507.
- Zhang J., Shi Y., Zhang X., Du H., Xu B., Huang B. Melatonin suppression of heatinduced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne L.) // Environ. Exp. Bot. 2017. V. 138. P. 36. https://doi.org/10.1016/j.envexpbot.2017.02.012
- Tan X.‐L., Fan Z.‐Q., Kuang J.‐F., Lu W.-J., Reiter R.J., Lakshmanan P., Su X-G., Zhou J., Chen J.Y., Shan W. Melatonin delays leaf senescence of Chinese flowering cabbage by suppressing ABFs-mediated abscisic acid biosynthesis and chlorophyll degradation // J. Pineal Res. 2019. V. 67. e12570. https://doi.org/10.1111/jpi.12570
- Li C., Tan D-X., Liang D., Chang C., Jia D., Ma F. Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress // J. Exp. Bot. 2015. V. 66. P. 669. https://doi.org/10.1093/jxb/eru476 2014
- Fu J., Wu Y., Miao Y., Yamei Xu Y., Zhao E., Wang J., Sun H., Liu Q., Xue Y., Xu Y., Hu T. Improved cold tolerance in Elymus nutans by exogenous application of melatonin may involve ABA-dependent and ABA-independent pathways // Scientif. Rep. 2017. V. 7. P. 39865. https://doi.org/10.1038/srep39865
- Li X., Tan D.X., Jiang D., Liu F. Melatonin enhances cold tolerance in drought-primed wild-type and abscisic acid-deficient mutant barley // J. Pineal Res. 2016. V. 61. P. 328. https://doi.org/10.1111/jpi.12350
- Zhao H., Zhang K., Zhou X., Xi L., Wang Y., Xu H., Pan T., Zou Z. Melatonin alleviates chilling stress in cucumber seedlings by up-regulation of CsZat12 and modulation of polyamine and abscisic acid metabolism // Sci. Rep. 2017. V. 7. P. 4998. https://doi.org/10.1038/s41598-017-05267-3
- Zhao D., Wang H., Chen S., Yu D., Reiter R.J. Phytomelatonin: an emerging regulator of plant biotic stress resistance // Trends Plant Sci. 2020. V. 26. P. 70. https://doi.org/10.1016/j.tplants.2020.08.009
- Park S., Byeon Y., Back K. Functional analyses of three ASMT gene family members in rice plants // J. Pineal Res. 2013. V. 55. P. 409. https://doi.org/10.1111/jpi.12088
- Chen Q., Arnao M.B. Phytomelatonin: an emerging new hormone in plants // J. Exp. Bot. 2022. V. 73. P. 5773. https://doi.org/10.1093/jxb/erac307
- Arnao M., Hernandez R.J. Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves // J. Pineal Res. 2009. V. 46. P. 58. https://doi.org/10.1111/j.1600-079X.2008.00625.x
- Ma X., Zhang J., Burgess O., Rossi S., Huang B. Interactive effects of melatonin and cytokinin on alleviating drought induced leaf senescence in creeping bentgrass (Agrostis stolonifera) // Environ. Exp. Bot. 2018. V. 145. P. 1. https://doi.org/10.1016/j.envexpbot.2017.10.010
- Bychkov I.A., Andreeva A.A., Kudryakova N.V., Kusnetsov V.V. Cytokinin modulates responses to phytomelatonin in Arabidopsis thaliana under high light stress // Int. J. Mol. Sci. 2023. V. 24. P. 738. https://doi.org/10.3390/ijms24010738
- Sliwiak J., Sikorski M., Jaskolski M. PR-10 proteins as potential mediators of melatonin-cytokinin cross-talk in plants: crystallographic studies of LlPR-10.2B isoform from yellow lupine // FEBS J. 2018. V. 285. P. 1907. https://doi.org/10.1111/febs.14455
- Fu J., Zhang S., Jiang H., Zhang H., Gao H., Yang P., Hu T. Melatonin-induced cold and drought tolerance is regulated by brassinosteroids and hydrogen peroxide signaling in perennial ryegrass // Environ. Exp. Bot. 2022. V. 196. P. 104815. https://doi.org/10.1016/j.envexpbot.2022.104815
- Hwang O.J., Back K. Melatonin is involved in skotomorphogenesis by regulating brassinosteroid biosynthesis in rice plants // J. Pineal Res. 2018. V. 65. e12495. https://doi.org/10.1111/jpi.12495
- Hwang O.J., Back K. Melatonin deficiency confers tolerance to multiple abiotic stresses in rice via decreased brassinosteroid levels // Int. J. Mol. Sci. 2019. V. 20. P. 5173. https://doi.org/10.3390/ijms20205173
- Xiong F., Zhuo F., Reiter R.J., Wang L., Wei Z., Deng K., Song Y., Qanmber G., Feng L., Yang Z., Li F., Ren M. Hypocotyl elongation inhibition of melatonin is involved in repressing brassinosteroid biosynthesis in Arabidopsis // Front. Plant Sci. 2019. V. 10. P. 1082. https://doi.org/10.3389/fpls.2019.01082
- Jahan M.S., Shu S., Wang Y., Hasan M.M., El-Yazied A.A., Alabdallah N.M., Hajjar D., Altaf M.A., Sun J., Guo S. Melatonin pretreatment confers heat tolerance and repression of heat-induced senescenece in tomato through the modulation of ABA-and GA-mediated pathways // Front. Plant Sci. 2021. V. 112. P. 65095. https://doi.org/10.3389/fpls.2021.650955
- Lv Y., Pan J., Wang H., Reiter R.J., Li X., Mou Z., Zhang J., Yao Z., Zhao D., Yu D. Melatonin inhibits seed germination by crosstalk with abscisic acid, gibberellin, and auxin in Arabidopsis // J. Pineal Res. 2021. V. 70. e12736. https://doi.org/10.1111/jpi.12736
- Mou Z., Wang H., Chen S., Reiter R.J., Zhao D. Molecular mechanisms and evolutionary history of phytomelatonin in flowering // J. Exp. Bot. 2022. V. 73. P. 5840. https://doi.org/10.1093/jxb/erac164
- Byeon Y., Back K. An increase in melatonin in transgenic rice causes pleiotropic phenotypes, including enhanced seedling growth, delayed flowering, and low grain yield // J. Pineal Res. 2014. V. 56. P. 408. https://doi.org/10.1111/jpi.12129
- Zhang Z., Hu Q., Liu Y., Cheng P., Cheng H., Liu W., Xing X., Guan Z., Fang W., Chen S., Jiang J., Chen F. Strigolactone represses the synthesis of melatonin, thereby inducing floral transition in Arabidopsis thaliana in an FLC -dependent manner // J. Pineal Res. 2019. V. 67. e12582. https://doi.org/10.1111/jpi.12582
- Shi H., Wei Y., Wang Q., Reiter R.J., He C. Melatonin mediates the stabilization of DELLA proteins to repress the floral transition in Arabidopsis // J. Pineal Res. 2016. V. 60. P. 373. https://doi.org/10.1111/jpi.12320
- Yang J., Duan G., Li C., Liu L., Han G., Zhang Y., Wang C. The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses // Front. Plant Sci. 2019. V. 10. P. 1349. https://doi.org/10.3389/fpls.2019.01349
- Ai Y., Zhu Z. Melatonin antagonizes jasmonate-triggered anthocyanin biosynthesis in Arabidopsis thaliana // J. Agric. Food. Chem. 2018. V. 66. P. 5392. https://doi.org/10.1021/acs.jafc.8b01795
- Shi H., Jiang C., Ye T., Tan D.X., Reiter R.J., Zhang H., Liu R., Chan Z. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodondactylon (L). Pers.] by exogenous melatonin // J. Exp. Bot. 2015 V. 66. P. 681. https://doi.org/10.1093/jxb/eru373
- Hu Z., Fu Q., Zheng J., Zhang A., Wang H. Transcriptomic and metabolomic analyses reveal that melatonin promotes melon root development under copper stress by inhibiting jasmonic acid biosynthesis // Hortic. Res. 2020. V. 7. P. 79. https://doi.org/10.1038/s41438-020-0293-5
- Li H., Guo Y.L., Lan Z., Kai X., Chang J.J., Ahammed G.J., Ma J.X., Wei C., Zhang X. Methyl jasmonate mediates melato-nininduced cold tolerance of grafted watermelon plants // Hortic. Res. 2021. V. 8. P. 57. https://doi.org/10.1038/s41438-021-00496-0
- Imran M., Khan M.A., Shahzad R., Bilal S., Khan M., Yun B.W., Khan A.L., Lee I.J. Melatonin ameliorates thermotolerance in soybean seedling through balancing redox homeostasis and modulating antioxidant defense, phytohormones and polyamines biosynthesis // Molecules. 2021. V. 26. P. 5116. https://doi.org/10.3390/molecules26175116
- Park H.S., Kazerooni E.A., Kang S.M., Al-Sadi A.M., Lee I.J. Melatonin enhances the tolerance and recovery mechanisms in Brassica juncea (L.) Czern. under saline conditions // Front. Plant Sci. 2021. V. 12. P. 593717. https://doi.org/10.3389/fpls.2021.593717
- Kaya C., Sarıoglu A., Ashraf M., Alyemeni M.N., Ahmad P. The combined supplementation of melatonin and salicylic acid effectively detoxifies arsenic toxicity by modulating phytochelatins and nitrogen metabolism in pepper plants // Environ. Pol. 2022. V. 297. P. 118727. https://doi.org/10.1016/j.envpol.2021.118727
- Hernandez-Ruiz J., Arnao M.B. Relationship of melatonin and salicylic acid in biotic/abiotic plant stress responses // Agronomy. 2018. V. 8. P. 33. https://doi.org/10.3390/agron omy80 40033
- Lee H.Y., Byeon Y., Back K. Melatonin as a signal molecule triggering defense responses against pathogen attack in Arabidopsis and tobacco // J. Pineal Res. 2014. V. 57. P. 262. https://doi.org/10.1111/jpi.12165
- Lee H.Y., Byeon Y., Tan D.-X., Reiter R.J., Back K. Arabidopsis serotonin N-acetyltransferase knockout mutant plants exhibit decreased melatonin and salicylic acid levels resulting in susceptibility to an avirulent pathogen // J. Pineal Res. 2015. V. 58. P. 291. https://doi.org/10.1111/jpi.12214
- Yue L., Kang Y., Zhong M., Kang D., Zhao P., Chai X., Yang X. Melatonin delays postharvest senescence through suppressing the inhibition of BrERF2/BrERF109 on flavonoid biosynthesis in flowering Chinese cabbage // Int. J. Mol. Sci. 2023. V. 24. P. 2933. https://doi.org/10.3390/ijms24032933
- Sun Q.Q., Zhang N., Wang J., Zhang H.J., Li D.B., Shi J., Li R., Weeda S., Zhao B., Ren S., Guo Y.D. Melatonin promotes ripening and improves quality of tomato fruit during postharvest life // J. Exp. Bot. 2015. V. 66. P. 657. https://doi.org/10.1093/jxb/eru332
- Yang L., Bu S., Zhao S., Wang N., Xiao J., He F., Gao X. Transcriptome and physiological analysis of increase in drought stress tolerance by melatonin in tomato // PLoS ONE. 2022. V. 17. e0267594. https://doi.org/10.1371/journal.pone.0267594
- Xu L., Xiang G., Sun Q., Ni Y., Jin Z., Gao S., Yao Y. Melatonin enhances salt tolerance by promoting MYB108A-mediated ethylene biosynthesis in grape vines // Hortic. Res. 2019. V. 6. P. 114. https://doi.org/10.1038/s41438-019-0197-4
- Zhang H., Wang L., Shi K., Shan D., Zhu Y., Wang C., Bai Y., Yan T., Zheng X., Kong J. Apple tree flowering is mediated by low level of melatonin under the regulation of seasonal light Signal // J. Pineal Res. 2019. V. 66. e12551. https://doi.org/10.1111/jpi.12551
- Ma W., Xu L., Gao S., Lyu X., Cao X., Yao Y. Melatonin alters the secondary metabolite profile of grape berry skin by promoting VvMYB14-mediated ethylene biosynthesis // Hortic. Res. 2021. V. 8. P. 43. https://doi.org/10.1038/s41438-021-00478-2
- Ludwing-Müller J., Lüthen H. From facts and false routes: how plant hormone research developed // J. Plant Growth Regul. 2015. V. 34. P. 697. https://doi.org/10.1007/s00344-015-9544-3
- Khanna K., Bhardwaj R., Alam P., Reiter R.J., Ahmad P. Phytomelatonin: A master regulator for plant oxidative stress management // Plant Physiol. Biochem. 2023. V. 196. P. 260. https://doi.org/10.1016/j.plaphy.2023.01.035
- Hardeland R. Melatonin: Another Phytohormone? // Res. Rev: J. Bot. Sci. 2016. V. 5.
- Sun C., Liu L., Wang L., Li B., Jin C., Lin X. Melatonin: A master regulator of plant development and stress responses // J. Integr. Plant Biol. 2021. V. 63. P. 126. https://doi.org/10.1111/jipb.12993
- Sharma P., Thakur N., Mann N.A., Umar A. Melatonin as plant growth regulator in sustainable agriculture // Scientia Horticulturae. 2024. V. 323. P. 112421. https://doi.org/10.1016/j.scienta.2023.112421
- Arnao M.B., Hernandez-Ruiz J. Melatonin: a new plant hormone and/or a plant master regulator? // Trends Plant Sci. 2019. V. 24. P. 38. https://doi.org/10.1016/j.tplants.2018.10.010
- Li H., Chang J., Zheng J., Dong Y., Liu Q., Yang X., Wei C., Zhang Y., Ma J., Zhang X. Local melatonin application induces cold tolerance in distant organs of Citrullus lanatus L. via long distance transport // Sci. Rep. 2017. V. 7. P. 40858. https://doi.org/10.1038/srep40858
Supplementary files
