Возрастные и адаптивные изменения показателей про-/антиоксидантного метаболизма и дыхания листьев зимне-зеленого травянистого растения Ajuga reptans L. в природных условиях таежной зоны

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Онтогенетическое развитие и условия среды являются основными факторами, определяющими жизнедеятельность растений. Исследовали активность антиоксидантных ферментов и дыхательных путей в розеточных листьях летне-зимне-зеленого травянистого многолетника Ajuga reptans L. (живучка ползучая) в связи с возрастом и перезимовкой. Сформированные в мае–июне листья перезимовывали и вновь функционировали вплоть до появления новой генерации листьев. Содержание продуктов липопероксидации и пероксида водорода в листьях перезимовавших растений было достоверно выше, чем до перезимовки. Активность антиоксидантных ферментов изменялась разнонаправлено. Повышенный уровень активности аскорбатпероксидазы (APX) отмечали сразу после выхода растений из-под снега, каталазы (CAT) – до и в период перезимовки, супероксиддисмутазы (SOD) – до, в период и сразу после перезимовки. На нативных гелях идентифицировали Mn-SOD, Fe-SOD и три изоформы Cu/Zn-SOD, две изоформы APX и одну – CAT. Скорость дыхания, измеренная при 20°С, была максимальной у молодых растущих листьев и снижалась в 3–4 раза к завершению жизненного цикла. Величина соотношения способности цитохромного и альтернативного дыхательных путей изменялась в пределах от 3 до 1 и менее. Коэффициент энергетической эффективности дыхания (YАТФ/глюкоза, количество молей АТФ, образующихся при окислении в дыхании 1 моля глюкозы) варьировал в пределах от 17 до 25, снижаясь в период перезимовки и на завершающих этапах онтогенеза. Результаты анализа главных компонент свидетельствуют о взаимосвязи исследованных показателей и вовлеченности закономерных изменений про-/антиоксидантного метаболизма и дыхания в процесс адаптации растений, зимующих с зелеными листьями. В совокупности полученные данные дополняют и углубляют представления о физиологических механизмах, способствующих перезимовке и сохранению фотосинтетического аппарата.

Full Text

Restricted Access

About the authors

М. А. Шелякин

Институт биологии Коми научного центра Уральского отделения­ Российской академии наук

Author for correspondence.
Email: shelyakin@ib.komisc.ru
Russian Federation, Сыктывкар

Е. В. Силина

Институт биологии Коми научного центра Уральского отделения­ Российской академии наук

Email: shelyakin@ib.komisc.ru
Russian Federation, Сыктывкар

К. Т. Головко

Институт биологии Коми научного центра Уральского отделения­ Российской академии наук

Email: shelyakin@ib.komisc.ru
Russian Federation, Сыктывкар

References

  1. Dymova O., Khristin M., Miszalski Z., Kornas A., Strzalka K., Golovko T. Seasonal variations of leaf chlorophyll–protein complexes in the wintergreen herbaceous plant Ajuga reptans L. // Funct. Plant Biol. 2018. V. 45. P. 519. https://doi.org/10.1071/FP17199
  2. Dymova O.V., Zakhozhiy I.G., Golovko T.K. Age and adaptive changes in the photosynthetic apparatus of leaves in winter green herbaceous plant Ajuga reptans L. in the natural conditions of the taiga zone // Russ. J. Plant Physiol. 2023. V. 70:114. https://doi.org/10.1134/S1021443723601325
  3. Mittler R., Zandalinas S.I., Fichman Y., Van Breusegem F. Reactive oxygen species signalling in plant stress responses // Nat. Rev. Mol. Cell Biol. 2022. V. 23. P. 663. https://doi.org/10.1038/s41580-022-00499-2
  4. Sachdev S., Ansari S.A., Ansari M.I., Fujita M., Hasanuzzaman M. Abiotic stress and reactive oxygen species: generation, signaling, and defense mechanisms // Antioxidants. 2021. V. 10. P. 277. https://doi.org/10.3390/antiox10020277
  5. Hasanuzzaman M., Bhuyan M.H.M.B., Zulfiqar F., Raza A., Mohsin S.M., Mahmud J.A., Fujita M., Fotopoulos V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator // Antioxidants. 2020. V. 9. P. 681. https://doi.org/10.3390/antiox9080681
  6. Golovko T.K., Garmash E.V. Plant respiration: classical and current notions // Russ. J. Plant Physiol. 2022. V. 69. P. 108. https://doi.org/10.1134/S1021443722060073
  7. Vishwakarma A., Tetali S., Selinski J., Scheibe R., Padmasree K. Importance of the alternative oxidase (AOX) pathway in regulating cellular redox and ROS homeostasis to optimize photosynthesis during restriction of the cytochrome oxidase pathway in Arabidopsis thaliana // Ann. Bot. 2015. V. 116. P. 555. https://doi.org/10.1093/aob/mcv122
  8. Van Aken O. Mitochondrial redox systems as central hubs in plant metabolism and signalling // Plant Physiol. 2021. V. 186. P. 36. https://doi.org/10.1093/plphys/kiab101
  9. Garmash E.V. Suppression of mitochondrial alternative oxidase can result in upregulation of the ROS scavenging network: some possible mechanisms underlying the compensation effect // Plant Biol. 2022. V. 25. P. 43. https://doi.org/10.1111/plb.13477
  10. Garmash E.V. Mitochondrial respiration of the photosynthesizing cell // Russ. J. Plant Physiol. 2016. V. 63. P. 13. https://doi.org/10.1134/S1021443715060072
  11. Vanlerberghe G.C., Dahal K., Alber N.A., Chadee A. Photosynthesis, respiration and growth: a carbon and energy balancing act for alternative oxidase // Mitochondrion. 2020. V. 52. P. 197. https://doi.org/10.1016/j.mito.2020.04.001
  12. Amthor J.S. The McCree–de Wit–Penning de Vries–Thornley respiration paradigms: 30 years later // Ann. Bot. 2000. V. 86. P. 1. https://doi.org/10.1006/anbo.2000.1175
  13. McDonald A.E., Vanlerberghe G.C. Origins, evolutionary history, and taxonomic distribution of alternative oxidase and plastoquinol terminal oxidase // Comp. Biochem. Physiol. Part D. Genomics Proteomics. 2006. V. 1. P. 357. https://doi.org/10.1016/j.cbd.2006.08.001
  14. Дымова О.В., Головко Т.К. Морфофизиологические аспекты вегетативного размножения Ajuga reptans L. // Репродуктивная биология растений. Сыктывкар: Коми НЦ УрО РАН. 1998. С. 72.
  15. Heath R.L., Packer L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation // Arch. Biochem. Biophys. 1968. V. 125. P. 189. https://doi.org/10.1016/0003-9861(68)90654-1
  16. Vetoshkina D.V., Pozdnyakova-Filatova I.Yu., Zhurikova E.M., Frolova A.A., Naydov I.A., Ivanov B.N., Borisova-Mubarakshina M.M. The increase in adaptive capacity to high illumination of barley plants colonized by rhizobacteria P. putida BS3701 // Appl. Biochem. Microbiol. 2019. V. 55. P.173. https://doi.org/10.1134/S0003683819020133
  17. Malyshev R.V., Silina E.V. Luminometer: principle of operation, device, and recommendations for assembly // Instrum. Exp. Tech. 2023. V. 66. P. 476.
  18. Beauchamp C., Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels // Anal. Biochem. 1971. V. 44. P. 276. https://doi.org/10.1016/0003-2697(71)90370-8
  19. Nakano Y., Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts // Plant Cell Physiol. 1981. V. 22. P. 867. https://doi.org/10.1093/oxfordjournals.pcp.a076232
  20. Aebi H. Catalase in vitro // Methods Enzymol. 1984. V. 105. P. 121. https://doi.org/10.1016/S0076-6879(84)05016-3
  21. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal. Biochem. 1976. V. 72. P. 248. https://doi.org/10.1016/0003-2697(76)90527-3
  22. Miszalski Z., Slesak I., Niewiadomska E., Baczek-Kwinta R., Luttge U., Ratajczak R. Subcellular localization and stress responses of superoxide dismutase isoforms from leaves in the C3-CAM intermediate halophyte Mesembryanthemum crystallinum L. // Plant Cell Environ. 1998. V. 21. P. 169. https://doi.org/10.1046/j.1365-3040.1998.00266.x
  23. Mittler R., Zilinskas B.A. Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate-dependent reduction of nitroblue tetrazolium // Anal. Biochem. 1993. V. 212. P. 540. https://doi.org/10.1006/abio.1993.1366
  24. Pezzoni M., Pizarro R.A., Costa C.S. Detection of catalase activity by polyacrylamide gel electrophoresis (PAGE) in cell extracts from Pseudomonas aeruginosa // Bio-protoc. 2018. V. 8:e2869. https://doi.org/10.21769/BioProtoc.2869
  25. Ding Y., Wang X.-T., Wang F., Shao Y.-L., Zhang A.-M., Chang W. The effects of chilling stress on antioxidant enzymes activities and proline, malondialdehyde, soluble sugar contents in three Paphiopedilum species // Russ. J. Plant Physiol. 2023. V. 70. P. 61. https://doi.org/10.1134/S1021443722603184
  26. Lee D.H., Lee C.B. Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays // Plant Sci. 2000. V. 159. P. 75. https://doi.org/10.1016/S0168-9452(00)00326-5
  27. Gill S.S., Anjum N.A., Gill R., Yadav S., Hasanuzzaman M., Fujita M., Mishra P., Sabat S.C., Tuteja N. Superoxide dismutase – mentor of abiotic stress tolerance in crop plants // Environ. Sci. Pollut. Res. 2015. V. 22. P. 10375. https://doi.org/10.1007/s11356-015-4532-5
  28. Santa-Cruz D.M., Pacienza N.A., Zilli C.G., Tomaro M.L., Balestrasse K.B., Yannarelli G.G. Nitric oxide induces specific isoforms of antioxidant enzymes in soybean leaves subjected to enhanced ultraviolet-B radiation // J. Photochem. Photobiol. B, Biol. 2014. V. 141. P. 202. https://doi.org/10.1016/j.jphotobiol.2014.09.019
  29. Anjum N.A., Sharma P., Gill S.S., Hasanuzzaman M., Khan E.A., Kachhap K., Mohamed A.A., Thangavel P., Devi G.D., Vasudhevan P., Sofo A., Khan N.A., Misra A.N., Lukatkin A.S., Singh H.P. et al. Catalase and ascorbate peroxidase – representative H2O2-detoxifying heme enzymes in plants // Environ. Sci. Pollut. Res. 2016. V. 23. P. 19002. https://doi.org/10.1007/s11356-016-7309-6
  30. Головко Т.К. Дыхание растений (физиологические аспекты). СПб: Наука, 1999. 204 c.
  31. Florez-Sarasa I.D., Bouma T.J., Medrano H., Azcon‐Bieto J., Ribas‐Carbo M. Contribution of the cytochrome and alternative pathways to growth respiration and maintenance respiration in Arabidopsis thaliana // Physiol. Plantarum. 2007. V. 129. P. 143. https://doi.org/10.1111/j.1399-3054.2006.00796.x
  32. Ivanova T.I., Kirpichnikova O.V., Sherstneva O.A., Yudina O.S. Annual cycle of respiration in the leaves of evergreen plants // Russ. J. Plant Physiol. 1998. V. 45. P. 906.
  33. Golovko T.K., Pystina N.V. The alternative respiration pathway in leaves of Rhodiola rosea and Ajuga reptans: presumable physiological role // Russ. J. Plant Physiol. 2001. V. 48. P. 733. https://doi.org/10.1023/A:1012596122292
  34. Millenaar F.F., Lambers H. The alternative oxidase: in vivo regulation and function // Plant Biol. 2003. V. 5. P. 2. https://doi.org/10.1055/s-2003-37974
  35. Grabelnych O.I., Borovik O.A., Tauson E.L., Pobezhimova T.P., Katyshev A.I., Pavlovskaya N.S., Koroleva N.A., Lyubushkina I.V., Borovskii G.B., Voinikov V.K., Bashmakov V.Yu., Popov V.N. Mitochondrial energy-dissipating systems (alternative oxidase, uncoupling proteins, and external NADH dehydrogenase) are involved in development of frost-resistance of winter wheat seedlings // Biochemistry (Moscow). 2014. V. 79. P. 506. https://doi.org/10.1134/S0006297914060030
  36. Seydel C., Kitashova A., Fürtauer L., Nägele T. Temperature-induced dynamics of plant carbohydrate metabolism // Physiol. Plant. 2022. V. 174. P. 13602. https://doi.org/10.1111/ppl.13602
  37. Plaxton W.C., Podestá F.E. The functional organization and control of plant respiration // Crit. Rev. Plant Sci. 2006. V. 25. P. 159. https://doi.org/10.1080/07352680600563876
  38. Li L., Nelson C.J., Trösch J., Castleden I., Huang S., Millar A.H. Protein degradation rate in Arabidopsis thaliana leaf growth and development // Plant Cell. 2017. V. 29. P. 207. https://doi.org/10.1105/tpc.16.00768
  39. Shugaeva N.A., Vyskrebentseva E.I., Orekhova S.O., Shugaev A.G. Effect of water deficit on respiration of conducting bundles in leaf petioles of sugar beet // Russ. J. Plant Physiol. 2007. V. 54. P. 329. https://doi.org/10.1134/S1021443707030065
  40. Shelyakin M.A., Zakhozhiy I.G., Golovko T.K. Ontogenetic aspects of plant respiration (by the example of Rubus chamaemorus L.) // Russ. J. Plant Physiol. 2016. V. 63. P. 92. https://doi.org/10.1134/S1021443716010167

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Protein profiles of superoxide dismutase (SOD) isoforms (a), ascorbate peroxidase (APX) (b), catalase (CAT) (c) (left) and their relative activity (right) during different periods of the leaf life cycle of Ajuga reptans. For SOD, the numbers are marked: 1 – Mn-containing isoforms (■), 2 – Fe-containing isoforms (→), 3-5 – Cu/Zn-containing isoforms (■). For APX, the numbers 1 and 2 indicate the isoforms APX-1 (?) and APX-2 (?), respectively. The "*” symbol marks the data for overwintered leaves. The arithmetic averages of the relative activity of isoforms and their standard errors are presented. Different Latin letters of the columns indicate the statistical significance of differences between the activity of enzyme isoforms in different periods of the leaf life cycle (Kraskel-Wallis criterion, P ≤ 0.05, n = 3-9).

Download (347KB)
3. Fig. 2. The contribution of the respiratory tract to the total uptake of O2 by Ajuga reptans leaves in different periods of their life cycle: 1 – cytochrome respiration (■); 2 – alternative respiration (■); 3 – residual respiration (□). The symbol “*” indicates data for overwintered leaves. Arithmetic averages and their standard errors are presented. Statistically significant differences in the studied indicator during the life cycle are indicated in different Latin letters (ANOVA, Duncan's criterion, n = 5-10, P ≤ 0.05).

Download (107KB)
4. Fig. 3. The relationship of pro-/antioxidant metabolism and respiration in Ajuga reptans leaves during their life cycle: TBARS – the content of lipid peroxidation products; SOD, APX, CAT – the activity of superoxide dismutase, axorbate peroxidase and catalase, respectively; Vcyt and Valt – the ability of cytochrome and alternative respiratory tract. A solid line combines interrelated indicators that contribute the main load to component 1 (PC 1) and/or component 2 (PC2). The results were obtained using principal component analysis. The distribution of indicators between the two components (axes) is justified by a high proportion of the total variance of variables (73.3%), which they describe.

Download (111KB)
5. Fig. 4. Changes in the energy efficiency of respiration (mole of ATP/mole of glucose) of Ajuga reptans leaves during their life cycle. The "*” symbol marks the data for overwintered leaves. Arithmetic averages and their standard errors are presented. Statistically significant differences in the studied indicator during the year are indicated in different Latin letters (ANOVA, Duncan's criterion, n = 5-10, P ≤ 0.05).

Download (41KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies