Growth and Physiological State of Microalgae Heterosigma akashiwo (Raphidophyceae) during Exposure to Cadmium, Lead, and Nickel

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of heavy metals cadmium, lead, and nickel on the growth and physiological state of raphidophyte algae Heterosigma akashiwo MBRU_HAK-SR11 (Y. Hada) Y. Hada ex Y. Hara, M. Chihara during 7 days of experiments has been assessed. It was found that cadmium and nickel at concentrations of 10 and 20 µg/L stimulated H. akashiwo growth, while lead inhibited it at these concentrations. Chlorophyll a and carotenoids content increased with the addition of 10 μg/L of cadmium and 20 μg/L of nickel, and the content of carotenoids was higher than that in the control with the addition of 20 μg/L of cadmium. With the introduction of lead, an increase in the level of chlorophyll a and a decrease in the content of carotenoids were observed. The content of ROS increased with the introduction of cadmium and lead and decreased with the introduction of nickel. Cadmium had an effect on the production of neutral lipids: their content increased and decreased by the end of the experiment. Nickel stimulated the accumulation of neutral lipids H. akashiwo, while lead had no effect on their content. Metals had the least effect on forward and side light scattering and fluorescence of chlorophyll a. The absence of pronounced changes in direct and lateral light scattering indirectly indicates that the algae cells did not change morphologically under toxic exposure. Thus, cadmium, lead, and nickel at concentrations of 10–20 µg/L changed physiological processes in algae.

About the authors

Zh. V. Markina

Zhirmunsky National Research Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences

Email: zhannav@mail.ru
Vladivostok, Russia

A. V. Ognistaya

Far Eastern Federal University; Zhirmunsky National Research Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences

Author for correspondence.
Email: zhannav@mail.ru
Vladivostok, Russia; Vladivostok, Russia

References

  1. Nagajyoti P.C., Lee K.D., Sreekanth T.V.M. Heavy metals, occurrence and toxicity for plants: a review // Environ. Chem. Lett. 2010. V. 8. P. 199. https://doi.org/10.1007/s10311-010-0297-8
  2. Masmoudi S., Nguyen-Deroche N., Caruso A., Ayadi H., Morant-Manceau A., Tremblin G. Cadmium, copper, sodium and zinc effects on diatoms: from heaven to hell – a review // Cryptogam., Algol. 2013. V. 34. P. 185. https://doi.org/10.7872/crya.v34.iss2.2013.185
  3. Huang X.G., Li S.X., Liu F.J., Lan W.R. Regulated effects of Prorocentrum donghaiense Lu exudate on nickel bioavailability when cultured with different nitrogen sources // Chemosphere. 2018. V. 197. P. 57. https://doi.org/10.1016/j.chemosphere.2018.01.014
  4. Cheng J., Qiu H., Chang Z., Jiang Z., Yin W. The effect of cadmium on the growth and antioxidant response for freshwater algae Chlorella vulgaris // SpringerPlus. 2016. V. 5. P. 1. https://doi.org/10.1186/s40064-016-2963-1
  5. Andosch A., Affenzeller M.J., Lütz C., Lütz-Meindl U. A freshwater green alga under cadmium stress: ameliorating calcium effects on ultrastructure and photosynthesis in the unicellular model Micrasterias // J. Plant Physiol. 2012. V. 169. P. 1489. https://doi.org/10.1016/j.jplph.2012.06.002
  6. Mallick N., Mohn F.H. Use of chlorophyll fluorescence in metal-stress research: a case study with the green microalga Scenedesmus // Ecotoxicol. Environ. Saf. 2003. V. 55. P. 64. https://doi.org/10.1186/10.1016/S0147-6513(02)00122-7
  7. Chia M.A., Lombardi A.T., Maria da Graça G.M., Parrish C.C. Lipid composition of Chlorella vulgaris (Trebouxiophyceae) as a function of different cadmium and phosphate concentrations // Aquat. Toxicol. 2013. V. 128. P. 171. https://doi.org/10.1016/j.aquatox.2012.12.004
  8. Jamers A., Blust R., De Coen W., Griffin J.L., Jones O.A. An omics based assessment of cadmium toxicity in the green alga Chlamydomonas reinhardtii // Aquat. Toxicol. 2013. V. 126. P. 355. https://doi.org/10.1016/j.aquatox.2012.09.007
  9. Martínez-Ruiz E.B., Martínez-Jerónimo F. Nickel has biochemical, physiological, and structural effects on the green microalga Ankistrodesmus falcatus: an integrative study // Aquat. Toxicol. 2015. V. 169. P. 27. https://doi.org/10.1016/j.aquatox.2015.10.007
  10. Li M., Zhang F., Glibert P.M. Seasonal life strategy of Prorocentrum minimum in Chesapeake Bay, USA: Validation of the role of physical transport using a coupled physical–biogeochemical–harmful algal bloom model // Limnol. Oceanogr. 2021. V. 66. P. 3873. https://doi.org/10.1002/lno.11925
  11. Маркина Ж.В. Ультраструктура и автотрофная функция клеток рафидофитовой микроводоросли Heterosigma akashiwo (Y. Hada) Y. Hada ex Y. Hara and M. Chihara, 1987 в загрязненной медью среде // Биология моря. 2021. Т. 47. С. 196. https://doi.org/10.31857/S0134347521030074
  12. Lemley D.A., Adams J.B., Rishworth G.M., Purdie D.A. Harmful algal blooms of Heterosigma akashiwo and environmental features regulate Mesodinium cf. rubrum abundance in eutrophic conditions // Harmful Algae. 2020. 100:101943. https://doi.org/10.1016/j.hal.2020.101943
  13. Bornman E., Adams J.B., Strydom N.A. Algal blooms of Heterosigma akashiwo and Mugilidae Gill Alterations // Estuaries Coast. 2022. V. 45. P. 1674. https://doi.org/10.1007/s12237-021-01038-6
  14. La Rocca N., Andreoli C., Giacometti G.Á., Rascio N., Moro I. Responses of the Antarctic microalga Koliella antarctica (Trebouxiophyceae, Chlorophyta) to cadmium contamination // Photosynthetica. 2009. V. 47. P. 471. https://doi.org/10.1007/s11099-009-0071-y
  15. Carfagna S., Lanza N., Salbitani G., Basile A., Sorbo S., Vona V. Physiological and morphological responses of lead or cadmium exposed Chlorella sorokiniana 211-8K (Chlorophyceae) // SpringerPlus. 2013. V. 2. P. 1. https://doi.org/10.1186/2193-1801-2-147
  16. Zamani-Ahmadmahmoodi R., Malekabadi M.B., Rahimi R., Johari S.A. Aquatic pollution caused by mercury, lead, and cadmium affects cell growth and pigment content of marine microalga, Nannochloropsis oculata // Environ. Monit. Assess. 2020. V. 192. P. 1. https://doi.org/10.1007/s10661-020-8222-5
  17. Gomes A., Ferdandes E., Lima J.F.L.C. Fluorescence probes used for detection of reactive oxygen species // J. Biophys. Biochem. Methods. 2005. V. 65. P. 45. https://doi.org/10.1016/j.jbbm.2005.10.003
  18. Wan M., Jin X., Xia J., Rosenberg J.N., Yu G., Nie Z., Oyler G.A., Betenbaugh M.J. The effect of iron on growth, lipid accumulation, and gene expression profile of the freshwater microalga Chlorella sorokiniana // Appl. Microbiol. Biotechnol. 2014. V. 98. P. 9473. https://doi.org/0.1007/s00253-014-6088-6
  19. Rajabi Islami H., Assareh R. Effect of different iron concentrations on growth, lipid accumulation, and fatty acid profile for biodiesel production from Tetradesmus obliquus // J. Appl. Phycol. 2019. V. 31 P. 3421. https://doi.org/10.1007/s10811-019-01843-4
  20. Guillard R.R.L., Ryther J.H. Studies of marine planktonic diatoms. 1. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. // Can. J. Microbiol. 1962. V. 8. P. 229. https://doi.org/10.1139/m62-029
  21. Hyka P., Lickova S., Přibyl P., Melzoch K., Kovar K. Flow cytometry for development of biotechnological processes with microalgae // Biotechnol. Adv. 2013. V. 31. P. 2. https://doi.org/10.1016/j.biotechadv.2012.04.007
  22. Alemán-Nava G.S., Cuellar-Bermudez S.P., Cuaresma M., Bosma R., Muylaert K., Ritmann B.E., Parra R. How to use Nile Red, a selective fluorescent stain for microalgal neutral lipids // J. Microbiol. Methods. 2016. V. 128. P. 74. https://doi.org/10.1016/j.mimet.2016.07.011
  23. Jeffrey S.T., Humphrey G.F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton // Biochem. Physiol. Pflanz. 1975. V. 167. P. 191. https://doi.org/10.1016/S0015-3796(17)30778-3
  24. Zhu Q.L., Guo S.N., Wen F., Zhang X.L., Wang C.C., Si L.F., Zeng J.L., Liu J. Transcriptional and physiological responses of Dunaliella salina to cadmium reveals time-dependent turnover of ribosome, photosystem, and ROS-scavenging pathways // Aquat. Toxicol. 2019. V. 207. P. 153. https://doi.org/10.1016/j.aquatox.2018.12.007
  25. Gissi F., Adams M.S., King C.K., Jolley D.F. A robust bioassay to assess the toxicity of metals to the Antarctic marine microalga Phaeocystis Antarctica // Environ. Toxicol. Chem. 2015. V. 34. P. 1578. https://doi.org/10.1002/etc.2949
  26. Dobrikova A.G., Apostolova E.L. Damage and protection of the photosynthetic apparatus under cadmium stress // Cadmium toxicity and tolerance in plants / Eds. M. Hasanuzzaman et al. Academic Press. 2019. P. 275. https://doi.org/10.1016/B978-0-12-814864-8.00011-5
  27. Singh M., Kumar J., Singh S., Singh V.P., Prasad S.M., Singh M.P.V.V.B. Adaptation strategies of plants against heavy metal toxicity: a short review // Biochem. Pharmacol. 2015. V. 4. P. 2167. https://doi.org/10.4172/2167-0501.1000161
  28. Barkhordari A.Z., Taherizadeh M.R., Yousef Z.M. Effects of different concentrations of lead on growth, photosynthetic pigmentation and protein micro alga Isochrysis galbana // J. Oceanogr. 2021. V. 12. P. 109. https://doi.org/10.52547/joc.12.46.109
  29. Shanab S., Essa A., Shalaby E. Bioremoval capacity of three heavy metals by some microalgae species (Egyptian Isolates) // Plant Signal. Behav. 2012. V. 7. P. 392. https://doi.org/10.4161/psb.19173
  30. Kumar K.S., Dahms H.U., Won E.J., Lee J.S., Shin K.H. Microalgae – a promising tool for heavy metal remediation // Ecotoxicol. Environ. Saf. 2015. V. 113. P. 329. https://doi.org/10.1016/j.ecoenv.2014.12.019
  31. Kemer K., Mantiri D.M., Rompas R.M., Rimper J.R., Margyaningsih N.I. Transmission electron microscope analysis upon growth of lead acetate treated microalga, Dunaliella sp. // Aquac. Aquar. Conserv. Legis. 2020. V. 13. P. 849.
  32. Dao L.H., Beardall J. Effects of lead on two green microalgae Chlorella and Scenedesmus: photosystem II activity and heterogeneity // Algal Res. 2016. V. 16. P. 150. https://doi.org/10.1016/j.algal.2016.03.006
  33. Moise M.M. Lead (Pb2+) causes chlorophyll related changes and oxidative damage in Chlorella ellipsoides (Chlorophyceae) // Braz. J. Biol. Sci. 2019. V. 6. P. 605. https://doi.org/10.21472/bjbs.061412
  34. Hong H.S., Wang M.H., Huang X.G., Wang D.Z. Effects of macronutrient additions on nickel uptake and distribution in the dinoflagellate Prorocentrum donghaiense Lu // Environ. Pollut. 2009. V. 157. P. 1933. https://doi.org/10.1016/j.envpol.2009.01.009
  35. Guo R., Lu D., Liu C., Hu J., Wang P., Dai X. Toxic effect of nickel on microalgae Phaeodactylum tricornutum (Bacillariophyceae) // Ecotoxicology. 2022. V. 31. P. 746. https://doi.org/10.1007/s10646-022-02532-8

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (524KB)
3.

Download (600KB)
4.

Download (667KB)

Copyright (c) 2023 Ж.В. Маркина, А.В. Огнистая

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies