Effect of NaCl on the Lipid Profile of Detergent-Resistant membranes of the Chloroplasts and Mitochondria of Euhalophyte Plants

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of 1 M NaCl on the lipid profile of detergent-resistant chloroplast membranes was studied. sts and mitochondria of salt-accumulating halophyte plants – Salicornia perennans Willd. And Suaeda salsa (L.) Pall. (family Amaranthaceae). The composition of lipids and fatty acids in detergent-resistant membranes differs from the membrane lipids of chloroplasts and mitochondria by a large number of cerebrosides and sterols. Under the given salinity conditions, S. perennans experienced many a fold increase in the proportion of cerebrosides in the composition of detergent-resistant chloroplast membranes, and in S. salsa is found in detergent-resistant mitochondrial membranes. The opposite effect was observed in relation to sterols: a decrease in their relative content under the action of salt. Received data indicate the participation of detergent-resistant membranes in the interaction of chloroplast cells and mitochondria in the cellular response of halophytes to salinity.

About the authors

V. N. Nesterov

Samara Federal Research Scientific Center RAS, Institute of Ecology of Volga River Basin RAS, Russian Academy of Sciences

Email: nesvik1@mail.ru
Russia, Toliaty

E. S. Bogdanova

Samara Federal Research Scientific Center RAS, Institute of Ecology of Volga River Basin RAS, Russian Academy of Sciences

Email: nesvik1@mail.ru
Russia, Tolyatti

O. A. Rozentsvet

Samara Federal Research Scientific Center RAS, Institute of Ecology of Volga River Basin RAS, Russian Academy of Sciences

Author for correspondence.
Email: nesvik1@mail.ru
Russia, Tolyatti

References

  1. Singer S.J., Nicolson G.L. The fluid mosaic model of the structure of cell membranes // Sci. 1972. V. 175. P. 720. https://doi.org/10.1126/science.175.4023.720
  2. Nickels J.D., Chatterjee S., Stanley C.B., Qian S., Cheng X., Myles D.A.A., Standaert R.F., Elkins J.G., Katsaras J. The in vivo structure of biological membranes and evidence for lipid domains // PLOS Biol. 2017. V. 15. e2002214. https://doi.org/10.1371/journal.pbio.2002214
  3. Laloi M., Perret A.-M., Chatre L., Melser S., Cantrel C., Vaultier M.-N., Zachowski A., Bathany K., Schmitter J.-M., Vallet M., Lessire R., Yartmann M.-A., Moreau P. Insights into the role of specific lipids in the formation and delivery of lipid microdomains to the plasma membrane of plant cells // Plant Physiol. 2007. V. 143. P. 461. https://doi.org/10.1104/pp.106.091496
  4. Hibino H., Kurachi Y. Distinct detergent-resistant membrane microdomains (lipid rafts) respectively harvest K+ and water transport systems in brain astroglia // Eur. J. Neurosci. 2007. V. 26. P. 2539. https://doi.org/10.1111/j.1460-9568.2007.05876.x
  5. Mongrand S., Stanislas T., Bayer E.M.F., Lherminier J., Simon-Plas F. Membrane rafts in plant cells // Trends Plant Sci. 2010. V. 15. P. 656. https://doi.org/10.1016/j.tplants.2010.09.003
  6. Lingwood D., Simons K. Lipid rafts as a membrane-organizing principle // Sci. 2010. V. 347. P. 46. https://doi.org/10.1126/science.117462
  7. Cacas J.-L., Furt F., Le Guédard M., Schmitter J.-M., Buré C., Gerbeau-Pissot P., Moreau P., Bessoule J.-J., Simon-Plas F., Mongrand S. Lipids of plant membrane rafts // Prog. in Lipid Res. 2012. V. 51. P. 272. https://doi.org/10.1016/j.plipres.2012.04.001
  8. Bessueille L., Sindt N., Guichardant M., Djerbi S., Teeri T.T., Bulone V. Plasma membrane microdomains from hybrid aspen cells are involved in cell wall polysaccharide biosynthesis // Biochem. J. 2009. V. 420. P. 93. https://doi.org/10.1042/bj2008211
  9. Sun J., Nanjundan M., Pike L.J., Wiedmer T., Sims P.J. Plasma membrane phospholipid scramblase 1 is enriched in lipid rafts and interacts with the epidermal growth factor receptor // Biochem. 2002. V. 41. P. 6338. https://doi.org/10.1021/bi025610l
  10. Blakeslee J.J., Bandyopadhyay A., Lee O.R., Mravec J., Titapiwatanakun B., Sauer M., Makam S.N., Cheng Y., Bouchard R., Adamec J., Geisler M., Nagashima A., Sakai T., Martinoia E., Friml J., et al. Interactions among PIN-FORMED and P-glycoprotein auxin transporters in Arabidopsis // Plant Cell Online. 2007. V. 19. P. 131. 10.1105/tpc.106.040782' target='_blank'>https://doi.org/doi: 10.1105/tpc.106.040782
  11. Demira F., Horntricha C., Blachutzika J.O., Scherzera S., Reindersc Y., Kierszniowskaa S., Schulzef W.X., Harmsb G.S., Hedricha R., Geigera D., Kreuzera I. Arabidopsis nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3 // Proc. Nat. Acad. Sci. 2013. V. 110. P. 8296. 10.1073/pnas.1211667110' target='_blank'>https://doi.org/doi: 10.1073/pnas.1211667110
  12. Yang H., Richter G.L., Wang X., Młodzińska E., Carraro N., Ma G., Jenness M., Chao D., Peer W.A., Murphy A.S. Sterols and sphingolipids differentially function in trafficking of the Arabidopsis ABCB19 auxin transporter // Plant J. 2012. V. 74. P. 37. https://doi.org/10.1111/tpj.12103
  13. Ott T. Membrane nanodomains and microdomains in plant – microbe interactions // Cur. Opin. Plant Biol. 2017. V. 40. P. 82. https://doi.org/10.1016/j.pbi.2017.08.008
  14. Flowers T.J., Glenn E.P., Volkov V. Could vesicular transport of Na+ and Cl– be a feature of salt tolerance in halophytes? // Ann. Bot. 2019. V. 123. P. 1. https://doi.org/10.1093/aob/mcy164
  15. Ozolina N.V., Kapustina I.S., Gurina V.V., Nurminsky V.N. Role of tonoplast microdomains in plant cell protection against osmotic stress // Planta. 2022. V. 255. P. 65. https://doi.org/10.1007/s00425-021-03800-3
  16. Bhat R.A., Miklis M., Schmelzer E., Schulze-Lefert P., Panstruga R. Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain // Proc. Nat. Acad. Sci. 2005. V. 102. P. 3135. https://doi.org/10.1073/pnas.0500012102
  17. Nesterov V.N., Nesterkina I.S., Rozentsvet O.A., Ozolina N.V., Salyaev R.K. Detection of lipid-protein microdomains (rafts) and investigation of their functional role in the chloroplast membranes of halophytes // Dokl. Biochem. Biophys. 2017. V. 476. P. 303. https://doi.org/10.1134/S1607672917050040
  18. Takahashi D., Imai H., Kawamura Y., Uemura M. Lipid profiles of detergent resistant fractions of the plasma membrane in oat and rye in association with cold acclimation and freezing tolerance // Cryobiol. 2016. V. 72. P. 123. https://doi.org/10.1016/j.cryobiol.2016.02.003
  19. Valitova J.N., Sulkarnayeva A.G., Minibayeva F.V. Plant sterols: diversity, biosynthesis, and physiological function // Biochem. (Moscow). 2016. V. 81. P. 819. https://doi.org/10.1134/S0006297916080046
  20. Dreyer I., Uozumi N. Potassium channels in plant cells // FEBS J. 2011. V. 278. P. 4293. https://doi.org/10.1111/j.1742-4658.2011.08371.x
  21. Rahman Md. M., Mostofa M.G., Keya S.S., Siddiqui Md.N., Ansary Md.M.U., Das A.K., Rahman Md.A., Tran L.S.-P. Adaptive mechanisms of halophytes and their potential in improving salinity tolerance in plants // IJMS. 2021. V. 22. P. 10733. https://doi.org/10.3390/ijms221910733
  22. Shabala S., Mackay A. Ion transport in halophytes // Advan. Bot. Res. 2011. V. 57. P. 151. https://doi.org/10.1016/b978-0-12-387692-8.00005-9
  23. Trono D., Laus M.N., Soccio M., Pastore D. Transport pathways – proton motive force interrelationship in durum wheat mitochondria // IJMS. 2014. V. 15. P. 8186. https://doi.org/10.3390/ijms15058186
  24. He C., Berkowitz O., Hu S., Zhao Y., Qian K., Shou H., Whelan J., Wang Y. Co-regulation of mitochondrial and chloroplast function: Molecular components and mechanisms // Plant Commun. 2023. V. 4. P. 1. https://doi.org/10.1016/j.xplc.2022.100496
  25. Wang Z., Benning C. Chloroplast lipid synthesis and lipid trafficking through ER-plastid membrane contact sites // Biochem. Society Trans. 2012. V. 40. P. 457. https://doi.org/10.1042/BST20110752
  26. Horvath S.E., Daum G. Lipids of mitochondria // Prog. Lipid Res. 2013. V. 52. P. 590. https://doi.org/10.1016/j.plipres.2013.07.002
  27. Rozentsvet O., Nesterkina I., Ozolina N., Nesterov V. Detergent-resistant microdomains (lipid rafts) in endomembranes of wild halophytes // Func. Plant Biol. 2019. V. 46. P. 869. https://doi.org/10.1071/FP18263
  28. Robinson S.P., Downton W.J.S. Potassium, sodium, and chloride content of isolated intact chloroplasts in relation to ionic compartmentation in leaves // Arch. Biochem. Biophys. 1984. V. 228. P. 197. 10.1016/0003-9861(84)90061-4' target='_blank'>https://doi.org/doi: 10.1016/0003-9861(84)90061-4
  29. Rozentsvet O.A., Nesterov V.N., Sinyutina N.F. The effect of copper ions on the lipid composition of subcellular membranes in Hydrilla verticillata // Chemosphere. 2012. V. 89. P. 108. https://doi.org/10.1016/j.chemosphere.2012.04.034
  30. Mellgren R.L. Detergent-resistant membrane subfractions containing proteins of plasma membrane, mitochondrial, and internal membrane origins // J. Biochem. Biophys. Meth. 2008. V. 70. P. 1029. https://doi.org/10.1016/j.jbbm.2007.08.001
  31. Нестеров В.Н., Розенцвет О.А., Богданова Е.С. Влияние абиотических факторов на состав жирных кислот Ulva intestinalis // Сибирский экологических журнал. 2013. № 4. С. 587.
  32. Розенцвет О.А., Нестеров В.Н., Богданова Е.С. Структурные и физиолого- биохимические аспекты солеустойчивости галофитов // Физиология растений. 2017. Т. 64. С. 251. https://doi.org/10.7868/S001533031704011X
  33. Lv S., Jiang P., Chen X., Fan P., Wang X., Li Y. Multiple compartmentalization of sodium conferred salt tolerance in Salicornia europaea // Plant Physiol. Biochem. 2012. V. 51. P. 47. https://doi.org/10.1016/j.plaphy.2011.10.015
  34. Rozentsvet O., Nesterov V., Bogdanova E., Kosobryukhov A., Subova S., Semenova G. Structural and molecular strategy of photosynthetic apparatus organization of wild flora halophytes // Plant Physiol. Biochem. 2018. V. 129. P. 213. https://doi.org/10.1016/j.plaphy.2018.06.006
  35. Chen M., Cahoon E.B. Plant sphingolipids: structure, synthesis and function // Lipids in photosynthesis: essential and regulatory functions / Eds. Wada H., Murata N., Dordrecht: Springer. 2009. P. 77. https://doi.org/10.1007/978-90-481-28631_5
  36. Sperling P., Heinz E. Plant sphingolipids: structural diversity, biosynthesis, first genes and functions // Biochim. Biophys. Acta. 2003. V. 1632. P. 1. https://doi.org/10.1016/S1388-1981(03)00033-7
  37. Jiang Z., Zhou X., Tao M., Yuan F., Liu L., Wu F., Wu X., Xiang Y., Niu Y., Liu F., Li C., Ye R., Byeon B., Xue Y., Zhao H., et al. Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx // Nature. 2019. V. 572. P. 341. https://doi.org/10.1038/s41586-019-1449-z
  38. Abbas H.K., Paul R.N., Boyette C.D., Duke S.O., Vesonder R.F. Physiological and ultrastructural effects of fumonisin on jimsonweed leaves // Can. J. Bot. 1992. V. 70. P. 1824. https://doi.org/10.1139/b92-226
  39. Lindsey K., Pullen M.L., Topping J.F. Importance of plant sterols in pattern formation and hormone signaling // Tren. Plant Sci. 2003. V. 8. P. 521. https://doi.org/10.1016/j.tplants.2003.09.012
  40. Nieto B., Fores O., Arro M., Ferrer A. Arabidopsis 33hydroxyy33methylglutaryll CoA reductase is regulated at the posttranslational level in response to alterations of the sphingolipid and the sterol biosynthetic pathways // Phytochem. 2009. V. 70. P. 53. https://doi.org/. phytochem.2008.10.010https://doi.org/10.1016/j

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (141KB)
3.

Download (173KB)
4.

Download (174KB)

Copyright (c) 2023 В.Н. Нестеров, Е.С. Богданова, О.А. Розенцвет

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies