Polyesters of 14-Hydroxylated Taxoids Found for the First Time in Taxus canadensis Intact Plants

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Taxane diterpenoids (taxoids) are found only in representatives of the Taxaceae family (different yew species); however, the unique structure and therapeutic properties of taxoids, which are in demand in medicine, have made these compounds one of the most studied secondary metabolites of higher plants. In this work, for the first time, a detailed study is performed into the structural diversity of polyesters of 14-hydroxylated taxoids in Taxus canadensis a yew species, for intact plants of which nonpolar 14-hydroxylated taxoids have not been previously described. At the first stage of the work, it was shown using chromato-mass spectrometry that polyesters of 14-hydroxylated taxoids (yunnanxan, taxuyunnanin C, sinenxan B, sinenxan C) are the dominant diterpenoid secondary metabolites in T. canadensis callus cell culture. Based on these results, as well as the similarity of the metabolism of cultivated in vitro plant cells and root cells in planta, it was suggested that polyesters of 14-hydroxylated taxoids will preferentially accumulate in the roots in intact T. canadensis plants. The validity of this hypothesis was confirmed using liquid chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy (NMR). According to chromato-mass-spectrometric screening in T. canadensis needles, polyesters of 14-hydroxylated taxoids are actually found only in trace amounts, while they are one of the major (quantitatively) diterpenoids in the roots. One of the main 14-hydroxylated taxoids of T. canadensis roots, yunnanxan, was isolated preparatively and uniquely identified using NMR spectroscopy and high-resolution mass spectrometry. This work is the first report on the presence of polyesters of 14-hydroxylated taxoids in intact Canadian yew plants.

About the authors

D. V. Kochkin

Federal State Budgetary Institution of Science Timiryazev Institute of Plant Physiology, Russian Academy of Sciences; Federal State Budgetary Educational Institution of Higher Education Lomonosov Moscow State University

Author for correspondence.
Email: dmitry-kochkin@mail.ru
Russian Federation, Moscow; Moscow

E. V. Demidova

Federal State Budgetary Institution of Science Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Email: dmitry-kochkin@mail.ru
Russian Federation, Moscow

E. B. Globa

Federal State Budgetary Institution of Science Timiryazev Institute of Plant Physiology, Russian Academy of Sciences

Email: dmitry-kochkin@mail.ru
Russian Federation, Moscow

E. S. Glagoleva

Federal State Budgetary Educational Institution of Higher Education Lomonosov Moscow State University

Email: dmitry-kochkin@mail.ru
Russian Federation, Moscow

B. A. Galishev

Federal State Autonomous Educational Institution of Higher Education Yeltsin Ural Federal University

Email: dmitry-kochkin@mail.ru
Russian Federation, Yekaterinburg

A. M. Nosov

Federal State Budgetary Institution of Science Timiryazev Institute of Plant Physiology, Russian Academy of Sciences; Federal State Budgetary Educational Institution of Higher Education Lomonosov Moscow State University

Email: dmitry-kochkin@mail.ru
Russian Federation, Moscow; Moscow

References

  1. Wang Y.-F., Shi Q.-W., Dong M., Kiyota H., Gu Y.-C., Cong B. Natural taxanes: Developments since 1828 // Chem. Rev. 2011. V. 111. P. 7652. https://doi.org/10.1021/cr100147u
  2. Lange B.M., Conner C.F. Taxanes and taxoids of the genus Taxus – A comprehensive inventory of chemical diversity // Phytochemistry. 2021. V. 190. P. 112829. https://doi.org/10.1016/j.phytochem.2021.112829
  3. Johnson S.R., Bhat W.W., Bibik J., Turmo A., Hamberger B., Evolutionary Mint Genomics Consortium, Hamberger B. A database-driven approach identifies additional diterpene synthase activities in the mint family (Lamiaceae) // J. Biol. Chem. 2019. V. 294. P. 1349. https://doi.org/10.1074/jbc.RA118.006025
  4. Baloglu E., Kingston D.G.I. The taxane diterpenoids // J. Nat. Prod. 1999. V. 62. P. 1448. https://doi.org/10.1021/np990176i
  5. Kochkin D.V., Globa E.B., Demidova E.V., Gaisinsky V.V., Kuznetsov V.V., Nosov A.M. Detection of taxuyunnanin C in suspension cell culture of Taxus canadensis // Dokl. Biochem. Biophys. 2019. V. 485. P. 129. https://doi.org/10.1134/S1607672919020145
  6. Shin J., Seo P.J. Varying auxin levels induce distinct pluripotent states in callus cells // Front. Plant Sci. 2018. V. 9. P. 1563. https://doi.org/10.3389/fpls.2018.01653
  7. Wink M. Physiology of the accumulation of secondary metabolites with special reference to alkaloids // Cell Culture in Phytochemistry / Eds. F. Constabel, I. Vasil. K. Academic Press, 1987. P. 17.
  8. Глоба Е.Б., Демидова Е.В., Туркин В.В., Макарова С.С., Носов А.М. Каллусогенез и получение суспензионных культур клеток четырех видов тисса: Taxus canadensis, T. baccata, T. cuspidata и T. media // Биотехнология. 2009. Т. 3. С. 54.
  9. Elpe C., Knopf P., Stützel T., Schulz C. Diversity and evolution of leaf anatomical characters in Taxaceae s.l. – fluorescence microscopy reveals new delimitating characters // J. Plant Res. 2018. V. 131. P. 125. https://doi.org/10.1007/s10265-017-0973-x
  10. Глоба Е.Б., Демидова Е.В., Гайсинский В.В., Кочкин Д.В. Получение и характеристика каллусной и суспензионной культур клеток тиса Валлиха (Taxus wallichiana Zucc.) // Вестник Северо-Восточного федерального университета имени М.К. Аммосова. 2018. Т. 2. С. 18. https://doi.org/10.25587/SVFU.2018.64.12127
  11. Kochkin D.V., Globa E.B., Demidova E.V., Gaisinsky V.V., Galishev B.A., Kolotyrkina N.G., Kuznetsov V.V., Nosov A.M. Occurrence of 14-hydroxylated taxoids in the plant in vitro cell cultures of different yew species (Taxus spp.) // Dokl. Biochem. Biophys. 2017. V. 476. P. 337. https://doi.org/10.1134/S1607672917050131
  12. Madhusudanan K. P., Chattopadhyay S. K., Tripathi V., Sashidhara K. V., Kumar S. MS/MS profiling of taxoids from the needles of Taxus wallichiana // Phytochem. Anal. 2002. V. 13. P. 18. https://doi.org/10.1002/pca.610
  13. Madhusudanan K.P., Chattopadhyay S.K., Tripathi V.K., Sashidhara K.V., Kukreja A.K., Jain S.P. LC-ESI-MS analysis of taxoids from the bark of Taxus wallichiana // Biomed. Chromatogr. 2002. V.16. P. 343. https://doi.org/10.1002/bmc.163
  14. Zhao C. F., Yu L. J., Li L. Q., Xiang F. Simultaneous identification and determination of major taxoids from extracts of Taxus chinensis cell cultures // Z. Naturforsch. C, J. Biosci. 2007. V. 62. P. 1. https://doi.org/10.1515/znc-2007-1-201
  15. Morikawa K., Tanaka K., Li F., Awale S., Tezuka Y., Nobukawa T., Kadota S. Analysis of MS/MS fragmentation of taxoids // Nat. Prod. Commun. 2010. V. 5. P. 1551. https://doi.org/10.1177/1934578x1000501007
  16. Sanchez-Muñoz R., Perez-Mata E., Almagro L., Cusido R.M., Bonfill M., Palazon J., Moyano E. A Novel Hydroxylation Step in the Taxane Biosynthetic Pathway: A New Approach to Paclitaxel Production by Synthetic Biology // Front. Bioeng. Biotechnol. 2020. V. 8. P. 410. https://doi.org/10.3389/fbioe.2020.00410
  17. Ma W., Stahlhut R.W., Adams T.L., Park G.L., Evans W.A., Blumenthal S.G., Gomez G.A., Nieder M.H., Hylands P.J. Yunnanxane and its homologous esters from cell cultures of Taxus chinensis var. mairei // J. Nat. Prod. 1994. V. 57. P. 1320. https://doi.org/10.1021/np50111a027
  18. Shi Q.-W., Sauriol F., Mamer O., Zamir L. O. New minor taxane derivatives from the needles of Taxus canadensis // J. Nat. Prod. 2003. V. 66. P. 1480. https://doi.org/10.1021/np000053u
  19. Topcu G., Sultana N., Akhtar F., Habib ur r., Hussain T., Choudhary M. I., Atta-ur R. Taxane diterpenes from Taxus baccata // Nat. Prod. Let. 1994. V. 4. P. 93. https://doi.org/10.1080/10575639408044919
  20. Banskota A.H., Usia T., Tezuka Y., Kouda K., Nguyen N.T., Kadota S. Three new C-14 oxygenated taxanes from the wood of Taxus yunnanensis // J. Nat. Prod. 2002. V. 65. P. 1700. https://doi.org/10.1021/np020235j
  21. Zhang H., Takeda Y., Minami Y., Yoshida K., Matsumoto T., Xiang W., Mu O., Sun H. Three new taxanes from the roots of Taxus yunnanensis // Chem. Let. 1994. V. 23. P.957. https://doi.org/10.1246/cl.1994.957
  22. Gabetta B., Peterlongo F., Zini G., Barboni L., Rafaiani G., Ranzuglia P., Torregiani E., Appendino G., Cravotto G. Taxanes from Taxus x media // Phytochemistry. 1995. V. 40. P. 1825. https://doi.org/10.1016/0031-9422(95)00474-L
  23. Chen W. M., Zhang P. L., Wu B., Zheng Q. T. Studies on the chemical constituents of Taxus yunnanensis // Yao Xue Xue Bao. 1991. V. 26. P. 747. [In Chinese].
  24. Shi Q.-W., Dong M., Huo C.-H., Su X.-H., Li C.-F., Zhang X.-P., Wang Y.-F., Kiyota H. New 14-Hydroxy-taxane and 2α,20-Epoxy-11(15→1)abeotaxane from the needles of Taxus canadensis // Biosci. Biotechnol. Biochem. 2007. V. 71. P. 1777. https://doi.org/10.1271/bbb.70063
  25. Li N., Wang J., Yan H.-M., Zhang M.-l., Shi Q.-W., Sauriol F., Kiyota H., Dong M. Two new taxane-glycosides from the needles of Taxus canadensis // Z. Naturforsch. B. 2015. V. 70 P. 829. https://doi.org/10.1515/znb-2015-0074
  26. Allison T. Self-fertility in Canada yew (Taxus canadensis Marsh.) // J. Torrey Bot. Soc. 1993. V. 120. P. 115. https://doi.org/10.2307/2996940
  27. Wilson P., Buonopane M., Allison T. Reproductive biology of the monoecious clonal shrub Taxus canadensis // Bull. Torrey Bot. Club. 1996. V. 123. P. 7. https://doi.org/10.2307/2996301
  28. Collins D., Mill R.R., Möller M. Species separation of Taxus baccata, T. canadensis, and T. cuspidata (Taxaceae) and origins of their reputed hybrids inferred from RAPD and cpDNA data // Am. J. Bot. 2003. V. 90. P. 175. https://doi.org/10.3732/ajb.90.2.175
  29. Windels S.K.W.K., Flaspohler D.J.F.J. The ecology of Canada yew (Taxus canadensis Marsh.): A review // Botany. 2011. V. 89. P. 1. https://doi.org/10.1139/B10-084
  30. van Rozendaal E.L.M., Kurstjens S.J.L., van Beek T.A., van den Berg R. G. Chemotaxonomy of Taxus // Phytochemistry. 1999. V. 52. P. 427. https://doi.org/10.1016/S0031-9422(99)00229-0
  31. Möller M., Liu J., Li Y., Li J.-H., Ye L.-J., Mill R., Thomas P., Li D.-Z., Gao L.-M. Repeated intercontinental migrations and recurring hybridizations characterise the evolutionary history of yew (Taxus L.) // Mol. Phylogenet. Evol. 2020. V. 153. P. 106952. https://doi.org/10.1016/j.ympev.2020.106952
  32. Butenko R.G. Some features of cultured plant cell // Plant cell culture. Advances in science and technology in the USSR / Ed. R.G. Butenko. Mir Publishers. 1985. P. 11.
  33. Fan M., Xu C., Xu K., Hu Y. LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration // Cell Res. 2012. V. 22. P. 1169. https://doi.org/10.1038/cr.2012.63
  34. Ikeuchi M., Sugimoto K., Iwase A. Plant callus: Mechanisms of induction and repression // Plant Cell. 2013. V. 25. P. 3159. https://doi.org/10.1105/tpc.113.116053

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (195KB)
3.

Download (143KB)
4.

Download (423KB)
5.

Download (69KB)
6.

Download (54KB)

Copyright (c) 2023 Д.В. Кочкин, Е.В. Демидова, Е.Б. Глоба, Е.С. Глаголева, Б.А. Галишев, А.М. Носов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies