The role of methylation of glutamate dehydrogenase gene promoters (GDH1 and GDH2) in the regulation of their expression in corn leaves under hypoxia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The regulation of glutamate dehydrogenase, an enzyme that is involved in both nitrogen and carbon metabolism, and also links between the tricarboxylic acid cycle and the γ-aminobutyric acid shunt, has been studied. It was found that oxygen deficiency-induced changes in glutamate dehydrogenase activity in maize leaves (Zea mays L.) are to increase its catalytic activity by more than twice. Differential expression of genes was studied by real-time PCR in GDH1 and GDH2, which encode the β- and α-subunits of glutamate dehydrogenase, respectively, in the maize genome. Decreased relative level of gene transcripts GDH2 was accompanied by an increase in the expression activity of the gene GDH1. This, in turn, presumably promoted the amination reaction of 2-oxoglutarate. In the promoter of the gene GDH2, the presence of two CpG islands 404 and 383 bp in size was found. Gene promoter GDH1 does not contain a single CpG island; however, 38% of the CpNpG and CpNpN sites of the total number of studied dinucleotides in its composition were found. To assess the influence of the degree of methylation of individual CpG dinucleotides that are part of the promoter regions of genes GDH1 and GDH2 on their expression under hypoxic conditions, a comparative analysis of the dynamics of the transcriptional activity of the genes of β- and α-subunits of glutamate dehydrogenase from the methyl status of their promoters was carried out. Inversely proportional superposition of changes in the methylation profile of gene promoters GDH1 and GDH2 and transformation of the level of expression of these genes shows their correlation. The data obtained as a result of methyl-specific PCR indicate that an increase in the proportion of methylated CpG dinucleotides leads to a decrease in the amount of mRNA of the gene GDH2, while a decrease in this value for the gene GDH1 causes the induction of its functioning. Methylation of promoter regions of glutamate dehydrogenase genes regulates their transcriptional activity in maize leaves in vivo under conditions of oxygen deficiency. Thus, the little data on the molecular mechanisms of regulation of the synthesis of glutamate dehydrogenase isoenzymes were supplemented by new results on the role of the degree of methylation of gene promoters GDH1 and GDH2 glutamate dehydrogenases in their differential expression during maize’s adaptation to hypoxia.

About the authors

A. T. Eprintsev

Federal State Budgetary Educational Institution of Higher Education Voronezh State University

Author for correspondence.
Email: bc366@bio.vsu.ru
Russian Federation, Voronezh

G. B. Anokhina

Federal State Budgetary Educational Institution of Higher Education Voronezh State University

Email: bc366@bio.vsu.ru
Russian Federation, Voronezh

References

  1. Xiaochuang C., Meiyan W., Chunquan Z., Chu Z., Junhua Z., Lianfeng Z., Lianghuan W., Qianyu J. Glutamate dehydrogenase mediated amino acid metabolism after ammonium uptake enhances rice growth under aeration condition // Plant Cell Reports. 2020. V. 39. P. 363. https://doi.org/10.1007/s00299-019-02496-w
  2. Godsora B.K.J., Prakash P., Punekar N.S., Bhaumik P. Molecular insights into the inhibition of glutamate dehydrogenase by the dicarboxylic acid metabolites // Proteins. 2022. V. 90. P. 810. https://doi.org/10.1002/prot.26276
  3. Grzechowiak M., Sliwiak J., Jaskolski M., Ruszkowski M. Structural studies of glutamate dehydrogenase (isoform 1) from Arabidopsis thaliana, an important enzyme at the branch-point between carbon and nitrogen metabolism // Front. Plant Sci. 2020. V. 11. P. 754. https://doi.org/10.3389/fpls.2020.00754
  4. Purnell M.P., Botella J.R. Tobacco isoenzyme 1 of NAD (H)-dependent glutamate dehydrogenase catabolizes glutamate in vivo // Plant Physiol. 2007. V. 143. P. 530. https://doi.org/10.1104/pp.106.091330
  5. Turano F.J., Thakkar S.S., Fang T., Weisemann J.M. Characterization and expression of NAD (H)-dependent glutamate dehydrogenase genes in Arabidopsis // Plant Physiol. 1997. V. 113. P. 1329. https://doi.org/10.1104/pp.113.4.1329
  6. Fontaine J.X., Tercé-Laforgue T., Bouton S., Pageau K., Lea P.J., Dubois F., Hirel B. Further insights into the isoenzyme composition and activity of glutamate dehydrogenase in Arabidopsis thaliana // Plant Signal. Behav. 2013. V. 8. e23329. https://doi.org/10.4161/psb.23329
  7. Fontaine J.X., Tercé-Laforgue T., Armengaud P., Clément G., Renou J.P., Pelletier S., Catterou M., Azzopardi M., Gibon Y., Peter J. Lea, Hire B., Dubois F. Characterization of a NADH-dependent glutamate dehydrogenase mutant of Arabidopsis demonstrates the key role of this enzyme in root carbon and nitrogen metabolism // Plant Cell. 2012. V. 24. P. 4044. https://doi.org/10.1105/tpc.112.103689
  8. Marchi L., Degola F., Polverini E., Tercé-Laforgue T., Dubois F., Hirel B., Restivo F.M. Glutamate dehydrogenase isoenzyme 3 (GDH3) of Arabidopsis thaliana is regulated by a combined effect of nitrogen and cytokinin // Plant Physiol. Biochem. 2013. V. 73. P. 368. https://doi.org/10.1016/j.plaphy.2013.10.019
  9. Baker P.J., Britton K.L., Engel P.C., Farrants G.W., Lilley K.S., Rice D.W. Subunit assembly and active site location in the structure of glutamate dehydrogenase // Proteins. 1992. V. 12. P. 75.
  10. Marchi L., Degola F., Baruffini E., Restivo F.M. How to easily detect plant NADH-glutamate dehydrogenase (GDH) activity? A simple and reliable in planta procedure suitable for tissues, extracts and heterologous microbial systems // Plant Sci. 2021. V. 304. P. 110714. https://doi.org/10.1016/j.plantsci.2020.110714
  11. Nagel M., Hartmann T. Glutamate dehydrogenase from Medicago sativa L., purification and comparative kinetic studies of the organ-specific multiple forms // Zeitschrift für Naturforschung C. 1980. V. 35. P. 406. https://doi.org/10.1515/znc-1980-5-610
  12. Robinson S.A., Stewart G.R., Phillips R. Regulation of glutamate dehydrogenase activity in relation to carbon limitation and protein catabolism in carrot cell suspension cultures // Plant Physiol. 1992. V. 98. P. 1190. https://doi.org/10.1104/pp.98.3.1190
  13. Lehmann T., Ratajczak L. The pivotal role of glutamate dehydrogenase (GDH) in the mobilization of N and C from storage material to asparagine in germinating seeds of yellow lupine // J. Plant Physiol. 2008. V. 165. P. 149. https://doi.org/10.1016/j.jplph.2006.12.010
  14. Sakakibara H., Fujii K., Sugiyama T. Isolation and characterization of a cDNA that encodes maize glutamate dehydrogenase // Plant Cell Physiol. 1995. V. 36. P. 789. https://doi.org/10.1093/oxfordjournals.pcp.a078823
  15. Lea P.J., Miflin B.J. Nitrogen assimilation and its relevance to crop improvement // Annu. Plant Rev. online. 2018. P. 1. https://doi.org/10.1002/9781444328608.ch1
  16. Skopelitis D.S., Paranychianakis N.V., Paschalidis K.A., Pliakonis E.D., Delis I.D., Yakoumakis D.I., Kouvarakis A., Papadakis A.K., Stephanou E.G., Roubelakis-Angelakis K.A. Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine // Plant Cell. 2006. V. 18. P. 2767. https://doi.org/10.1105/tpc.105.038323
  17. Labboun S., Tercé-Laforgue T., Roscher A., Bedu M., Restivo F.M., Velanis C.N., Skopelitis D.S., Moshou P.N., Roubelakis-Angelakis K.A., Suzuki A., Hirel B. Resolving the role of plant glutamate dehydrogenase. I. In vivo real time nuclear magnetic resonance spectroscopy experiments // Plant Cell Physiol. 2009. V. 50. P. 1761. https://doi.org/10.1093/pcp/pcp118
  18. Igamberdiev A.U., Hill R.D. Plant mitochondrial function during anaerobiosis // Ann. Bot. 2009. V. 103. P. 259. https://doi.org/10.1093/aob/mcn100
  19. Епринцев А.Т., Федорин Д.Н., Анохина Г.Б., Гатауллина М.О. Роль эпигенетических механизмов в регуляции активности 2-ОГДГ и МДГ в листьях кукурузы (Zea mays L.) при гипоксии // Физиология растений. 2021. Т. 68. С. 187. https://doi.org/10.31857/S0015330321010061
  20. Yang N., Chanda S., Marro S., Ng Y.H., Janas J.A., Haag D., Ang C.E., Tang Y., Flores Q., Mall M., Wapinski O., Li M., Ahlenius H., Rubenstein J.L., Chang H.Y., et al. Generation of pure GABAergic neurons by transcription factor programming // Nat. Methods. 2017. V. 14. P. 621.
  21. Sarasketa A., González-Moro M.B., González-Murua C., Marino D. Nitrogen source and external medium pH interaction differentially affects root and shoot metabolism in Arabidopsis // Front. Plant Sci. 2016. V. 7. P. 868. https://doi.org/10.3389/fpls.2016.00029
  22. Hsieh C.L. Evidence that protein binding specifies sites of DNA demethylation // Mol. Cell. Biol. 1999. V. 19. P. 46. https://doi.org/10.1128/MCB.19.1.46
  23. Рябушкина Н.А., Омашева М.Е., Галиакпаров Н.Н. Специфика выделения ДНК из растительных объектов // Биотехнология. Теория и практика. 2012. V. 2. P. 9.
  24. Chomczynski P., Sacchi N. Singlestep-method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction // Anal. Biochem. 1987. V. 162. P. 156.
  25. Zar J.H. Biostatistical analysis. Education India: Pearson. 1999. P. 634
  26. Лакин Г.Ф. Биометрия. Москва: Высшая школа. 1990. С. 351
  27. Ashapkin V.V., Kutueva L.I., Aleksandrushkina N.I., Vanyushin B.F. Epigenetic mechanisms of plant adaptation to biotic and abiotic stresses // Int. J. Mol. Sci. 2020. V. 21. P. 7457. https://doi.org/10.3390/ijms21207457
  28. Eprintsev A.T., Fedorin D.N., Dobychina M.A., Igamberdiev A.U. Expression and promoter methylation of succinate dehydrogenase and fumarase genes in maize under anoxic conditions // J. Plant Physiol. 2017. V. 216. P. 197. https://doi.org/10.1016/j.jplph.2017.06.011
  29. Eprintsev A.T., Fedorin D.N., Dobychina M.A., Igamberdiev A.U. Regulation of expression of the mitochondrial and peroxisomal forms of citrate synthase in maize during germination and in response to light // Plant Sci. 2018. V. 272. P. 157.https://doi.org/10.1016/j.plantsci.2018.04.017
  30. Кирнос М.Д., Александрушкина Н.И., Ванюшин Б.Ф. 5-метилцитозин в пиримидиновых последовательностях ДНК растений и животных: специфичность метилирования // Биохимия. 1981. V. 46. P. 1458.
  31. Kinnersley A.M., Turano F.J. Gamma aminobutyric acid (GABA) and plant responses to stress // CRC Crit. Rev. Plant Sci. 2000. V. 19. P. 479. https://doi.org/10.1080/07352680091139277
  32. Bouche N., Fromm H. GABA in plants: just a metabolite? // Trends Plant Sci. 2004. V. 9. P. 110. https://doi.org/10.1016/j.tplants.2004.01.006
  33. Limami A.M., Glévarec G., Ricoult C., Cliquet J.B., Planchet E. Concerted modulation of alanine and glutamate metabolism in young Medicago truncatula seedlings under hypoxic stress // J. Exp. Bot. 2008. V. 59. P. 2325. https://doi.org/10.1093/jxb/ern102
  34. Limami A.M., Diab H., Lothier J. Nitrogen metabolism in plants under low oxygen stress // Planta. 2014. V. 239. P. 531. https://doi.org/10.1007/s00425-013-2015-9

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (50KB)
3.

Download (58KB)
4.

Download (50KB)
5.

Download (178KB)
6.

Download (84KB)
7.

Download (93KB)
8.

Download (71KB)
9.

Download (94KB)

Copyright (c) 2023 А.Т. Епринцев, Г.Б. Анохина

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies