Cultivar-Specific Effect of Chitosan on Chitinase and Glucanase Activity in the Roots of Garlic Allium sativum L.

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Chitosan is a natural polysaccharide and, when applied externally, is able to stimulate both growth and defense of the plant, enhancing its resistance to abiotic stresses and suppressing the development of many phytopathogens. Immune response includes the activation of defense proteins, carbohydrases such as chitinases and glucanases, which are also known to participate in the regulation of morphogenesis. In this study, for the first time, the effect of treatment with unfractionated (hydrolysate) chitosan of low (CH1) and medium (CH2) molecular weight on chitinase and glucanase activities, as well as on the expression of chitinase and β-1,3-glucanase genes in the roots of two cultivars of garlic Allium sativum L. differing by resistance to Fusarium rot was examined. It was shown that the effect of chitosans on the enzymatic activity and expression of the genes encoding β-1,3-glucanases (AsPR2a, AsPR2b, and AsPR2c) and chitinases (AsCHI1, AsCHI3, AsCHI7, AsCHI17, and AsCHI23) is cultivar-specific, which may be due to different susceptibility of the cultivars to Fusarium. The expression pattern of chitinase genes AsCHI10, AsCHI27, and AsCHI34, similar between varieties, suggested their involvement in root tissue morphogenesis. The results indicated a greater stimulatory effect of CH2 in comparison with CH1 on chitinase and glucanase activity. The stronger inhibitory influence of CH2 (as compared with CH1) on the expression of chitinase and β-1,3-glucanase genes correlated with the lower fungicidal effect of CH2 on Fusarium proliferatum. The findings may be used in breeding biotechnology to increase the resistance of garlic to Fusarium.

About the authors

M. A. Filyushin

Institute of Bioengineering, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences

Author for correspondence.
Email: michel7753@mail.ru
Russian Federation, Moscow

B. Ts. Shagdarova

Institute of Bioengineering, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences

Email: michel7753@mail.ru
Russian Federation, Moscow

A. V. Il’ina

Institute of Bioengineering, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences

Email: michel7753@mail.ru
Russian Federation, Moscow

E. Z. Kochieva

Institute of Bioengineering, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences

Email: michel7753@mail.ru
Russian Federation, Moscow

A. V. Shchennikova

Institute of Bioengineering, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences

Email: michel7753@mail.ru
Russian Federation, Moscow

V. P. Varlamov

Institute of Bioengineering, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences

Email: michel7753@mail.ru
Russian Federation, Moscow

References

  1. Gow N.A.R., Latge J.P., Munro C.A. The Fungal Cell Wall: Structure, Biosynthesis, and Function // Microbiology Spectrum. 2017. V. 5: FUNK-0035-2016. https://doi.org/10.1128/microbiolspec.FUNK-0035-2016
  2. Pusztahelyi T. Chitin and chitin-related compounds in plant-fungal interactions // Mycology. 2018. V. 9. P. 189. https://doi.org/10.1080/21501203.2018.1473299
  3. Kumaraswamy R.V., Saharan V., Kumari S., Chandra Choudhary R., Pal A., Sharma S.S., Rakshit S., Raliya R., Biswas P. Chitosan-silicon nanofertilizer to enhance plant growth and yield in maize (Zea mays L.) // Plant Physiol. Biochem. 2021. V. 159. P. 53. https://doi.org/10.1016/j.plaphy.2020.11.054
  4. Ali S., Ganai B.A., Kamili A.N., Bhat A.A., Mir Z.A., Bhat J.A., Tyagi A., Islam S.T., Mushtaq M., Yadav P., Rawat S., Grover A. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance // Microbiol. Res. 2018. V. 212–213. P. 29. https://doi.org/10.1016/j.micres.2018.04.008
  5. Balasubramanian V., Vashisht D., Cletus J., Sakthivel N. Plant β-1,3-glucanases: their biological functions and transgenic expression against phytopathogenic fungi // Biotechnol. Lett. 2012. V. 34. P. 1983. https://doi.org/10.1007/s10529-012-1012-6
  6. Li P., Linhardt R.J., Cao Z. Structural Characterization of Oligochitosan Elicitor from Fusarium sambucinum and Its Elicitation of Defensive Responses in Zanthoxylum bungeanum // Int. J. Mol. Sci. 2016. V. 17: 2076. https://doi.org/10.3390/ijms17122076
  7. Fukamizo T., Shinya S. Chitin/Chitosan-Active Enzymes Involved in Plant-Microbe Interactions // Adv. Exp. Med. Biol. 2019. V. 1142. P. 253. https://doi.org/10.1007/978-981-13-7318-3_12
  8. Jogaiah S., Satapute P., De Britto S., Konappa N., Udayashankar A.C. Exogenous priming of chitosan induces upregulation of phytohormones and resistance against cucumber powdery mildew disease is correlated with localized biosynthesis of defense enzymes // Int. J. Biol. Macromol. 2020. V. 162. P. 1825. https://doi.org/10.1016/j.ijbiomac.2020.08.124
  9. Katiyar D., Hemantaranjan A., Singh B., Bhanu A.N. A future perspective in crop protection: chitosan and its oligosaccharides // Advances in Plants and Agriculture Research. 2014. V. 1 : 00006. https://doi.org/10.15406/apar.2014.01.00006
  10. Lopez-Moya F., Suarez-Fernandez M., Lopez-Llorca L.V. Molecular Mechanisms of Chitosan Interactions with Fungi and Plants // Int. J. Mol. Sci. 2019. V. 20: 332. https://doi.org/10.3390/ijms20020332
  11. Palma-Guerrero J., Lopez-Jimenez J.A., Perez-Berna A.J., Huang I.C., Jansson H.B., Salinas J., Villalain J., Read N.D., Lopez-Llorca L.V. Membrane fluidity determines sensitivity of filamentous fungi to chitosan // Mol. Microbiol. 2010. V. 75. P. 1021. https://doi.org/10.1111/j.1365-2958.2009.07039.x
  12. Narula K., Elagamey E., Abdellatef M.A.E., Sinha A., Ghosh S., Chakraborty N., Chakraborty S. Chitosan-triggered immunity to Fusarium in chickpea is associated with changes in the plant extracellular matrix architecture, stomatal closure and remodeling of the plant metabolome and proteome // Plant J. 2020. V. 103. P. 561. https://doi.org/10.1111/tpj.14750
  13. Nakkeeran S., Rajamanickam S., Saravanan R., Vanthana M., Soorianathasundaram K. Bacterial endophytome-mediated resistance in banana for the management of Fusarium wilt // 3 Biotech. 2021. V. 11: 267. https://doi.org/10.1007/s13205-021-02833-5
  14. Degani O., Kalman B. Assessment of Commercial Fungicides against Onion (Allium cepa) Basal Rot Disease Caused by Fusarium oxysporum f. sp. cepae and Fusarium acutatum // Journal of Fungi (Basel). 2021. V. 7: 235. http://doi: https://doi.org/10.3390/jof7030235
  15. Francesconi S., Steiner B., Buerstmayr H., Lemmens M., Sulyok M., Balestra G.M. Chitosan Hydrochloride Decreases Fusarium graminearum Growth and Virulence and Boosts Growth, Development and Systemic Acquired Resistance in Two Durum Wheat Genotypes // Molecules. 2020. V. 25: 4752. https://doi.org/10.3390/molecules25204752
  16. Kalman B., Abraham D., Graph S., Perl-Treves R., Meller Harel Y., Degani O. Isolation and Identification of Fusarium spp., the Causal Agents of Onion (Allium cepa) Basal Rot in Northeastern Israel // Biology. 2020. V. 9: 69. https://doi.org/10.3390/biology9040069
  17. Galvez L., Urbaniak M., Waskiewicz A., Stępien L., Palmero D. Fusarium proliferatum – Causal agent of garlic bulb rot in Spain: Genetic variability and mycotoxin production // Food Microbiol. 2017. V. 67. P. 41. http://doi: https://doi.org/10.1016/j.fm.2017.05.006
  18. Delgado-Ortiz J.C., Ochoa-Fuentes Y.M., Cerna-Chavez E., Beltran-Beache M., Rodriguez-Guerra R., Aguirre-Uribe L.A., Vazquez-Martinez O. Fusarium species associated with basal rot of garlic in North Central Mexico and its pathogenicity // Rev. Argent. Microbiol. 2016. V. 48. P. 222. https://doi.org/10.1016/j.ram.2016.04.003
  19. Filyushin M.A., Anisimova O.K., Kochieva E.Z., Shchennikova A.V. Genome-Wide Identification and Expression of Chitinase Class I Genes in Garlic (Allium sativum L.) Cultivars Resistant and Susceptible to Fusarium proliferatum // Plants (Basel). 2021. V. 10: 720. https://doi.org/10.3390/plants10040720
  20. Anisimova O.K., Shchennikova A.V., Kochieva E.Z., Filyushin M.A. Pathogenesis-Related Genes of PR1, PR2, PR4, and PR5 Families Are Involved in the Response to Fusarium Infection in Garlic (Allium sativum L.) // Int. J. Mol. Sci. 2021. V. 22: 6688. http://doi: https://doi.org/10.3390/ijms22136688
  21. Anisimova O.K., Kochieva E.Z., Shchennikova A.V., Filyushin M.A. Thaumatin-like Protein (TLP) Genes in Garlic (Allium sativum L.): Genome-Wide Identification, Characterization, and Expression in Response to Fusarium proliferatum Infection // Plants (Basel). 2022. V. 11: 748. https://doi.org/10.3390/plants11060748
  22. Anisimova O.K., Seredin T.M., Danilova O.A., Filyushin M. First Report of Fusarium proliferatum Causing Garlic clove Rot in Russian Federation // Plant Dis. 2021. V. 105. https://doi.org/10.1094/PDIS-12-20-2743-PDN
  23. Shagdarova B.T., Ilyina A.V., Lopatin S.A., Kartashov M.I., Arslanova L.R., Dzhavakhiya V.G., Varlamov V.P. Study of the protective activity of chitosan hydrolyzate against Septoria leaf blotch of wheat and brown spot of tobacco // Appl. Biochem. Microbiol. 2018. V. 54. P. 71. https://doi.org/10.1134/S0003683818010118
  24. Lopatin S.A., Derbeneva M.S., Kulikov S.N., Varlamov V.P., Shpigun O.A. Fractionation of chitosan by ultrafiltration // J. Anal. Chem. 2009. V. 64. P. 648. https://doi.org/10.1134/S1061934809060197
  25. Khan M.F., Umar U.U. Application of a robust microplate assay to determine induced β-1,3-glucanase and chitinase activity in the cotton plant // Biotechniques. 2021. V. 70. P. 202. http://doi: https://doi.org/10.2144/btn-2020-0015
  26. Mourya V.K., Inamdar N.N., Choudhari Y.M. Chitooligosaccharides: Synthesis, characterization and applications // Polymer Science Series A. 2011. V. 53. P. 583. https://doi.org/10.1134/s0965545x11070066
  27. Dai D.H., Hu W.L., Huang G.R., Li W. Purification and characterization of a novel extracellular chitinase from thermophilic Bacillus sp. Hu1 // African Journal of Biotechnology. 2011. V. 10. P. 2476. https://doi.org/10.5897/AJB10.1029
  28. Abeles F.B., Forrence L.E. Temporal and Hormonal Control of β-1,3-Glucanase in Phaseolus vulgaris L. // Plant Physiol. 1970. V. 45. P. 395. http://doi: https://doi.org/10.1104/pp.45.4.395
  29. Malik A. Purification and properties of plant chitinases: A review // J. Food Biochem. 2019: e12762. https://doi.org/10.1111/jfbc.12762
  30. Orlando M., Buchholz P.C.F., Lotti M., Pleiss J. The GH19 Engineering Database: Sequence diversity, substrate scope, and evolution in glycoside hydrolase family 19 // PLoS One. 2021. V. 16: e0256817. https://doi.org/10.1371/journal.pone.0256817
  31. Tobias P.A., Christie N., Naidoo S., Guest D.I., Kulheim C. Identification of the Eucalyptus grandis chitinase gene family and expression characterization under different biotic stress challenges // Tree Physiol. 2017. V. 37. P. 565. https://doi.org/10.1093/treephys/tpx010
  32. Durechova D., Jopcik M., Rajninec M., Moravcikova J., Libantova J. Expression of Drosera rotundifolia Chitinase in Transgenic Tobacco Plants Enhanced Their Antifungal Potential // Mol. Biotechnol. 2019. V. 61. P. 916. https://doi.org/10.1007/s12033-019-00214-1
  33. Helleboid S., Hendriks T., Bauw G., Inze D., Vasseur J., Hilbert J.-L. Three major somatic embryogenesis related proteins in Cichorium identified as PR protein // J. Exp. Bot. 2000. V. 51. P. 1189.
  34. Zhong R., Kays S.J., Schroeder B.P., Ye Z.-H. Mutation of a chitinase-like gene causes ectopic deposition of lignin, aberrant cell shapes, and overproduction of ethylene // Plant Cell. 2002. V. 14. P. 165. https://doi.org/10.1105/tpc.010278
  35. Kasprzewska A. Plant chitinases–regulation and function // Cell Mol. Biol. Lett. 2003. V. 8. P. 809.
  36. Vaddepalli P., Fulton L., Wieland J., Wassmer K., Schaeffer M., Ranf S., Schneitz K. The cell wall-localized atypical β-1,3 glucanase ZERZAUST controls tissue morphogenesis in Arabidopsis thaliana // Development. 2017. V. 144. P. 2259. http://doi: https://doi.org/10.1242/dev.152231.
  37. Wu S.W., Kumar R., Iswanto A.B.B., Kim J.Y. Callose balancing at plasmodesmata // J. Exp. Bot. 2018. V. 69. P. 5325. https://doi.org/10.1093/jxb/ery317
  38. Peumans W.J., Proost P., Swennen R.L., Van Damme E.J.M. The abundant class III chitinase homolog in young developing banana fruits behaves as a transient vegetative storage protein and mast probably serves as an important supply of amino acid for the synthesis of ripening-associated proteins // Plant Physiol. 2002. V. 130. P. 1063. https://doi.org/10.1104/pp.006551
  39. Guevara M.G., Oliva C.R., Machinaadiarena M., Daleo G.R. Purification and properties of an aspartic protease from potato tuber that is inhibited by a basic chitinase // Physiol. Plant. 1999. V. 106. P. 164.
  40. Ary M.B., Richardson M., Shewry P.R. Purification and characterization of an insect α-amylase inhibitor/endochitinase from seeds of Job’s Tears (Coix lachryma-jobi) // Biochim. Biophys. Acta. 1989. V. 913. P. 260. https://doi.org/10.1016/0167-4838(89)90007-1
  41. Malerba M., Cerana R. Chitosan Effects on Plant Systems // Int. J. Mol. Sci. 2016. V. 17. 996. http://doi: https://doi.org/10.3390/ijms17070996
  42. Li K., Xing R., Liu S., Li P. Chitin and Chitosan Fragments Responsible for Plant Elicitor and Growth Stimulator // J. Agric. Food Chem. 2020. V. 68. P. 12203. https://doi.org/10.1021/acs.jafc.0c05316
  43. Santoso J., Adiputra K.C., Soerdirga L.C., Tarman K. Effect of acetic acid hydrolysis on the characteristics of water soluble chitosan // IOP Conference Series: Earth and Environmental Science. 2020. V. 414: 012021. https://doi.org/10.1088/1755-1315/414/1/012021
  44. Lopez-Velazquez J.C., Haro-Gonzalez J.N., Garcia-Morales S., Espinosa-Andrews H., Navarro-Lopez D.E., Montero-Cortes M.I., Qui-Zapata J.A. Evaluation of the Physicochemical Properties of Chitosans in Inducing the Defense Response of Coffea arabica against the Fungus Hemileia vastatrix // Polymers. 2021. V. 13: 1940. https://doi.org/10.3390/polym13121940
  45. Quitadamo F., De Simone V., Beleggia R., Trono D. Chitosan-Induced Activation of the Antioxidant Defense System Counteracts the Adverse Effects of Salinity in Durum Wheat // Plants (Basel). 2021. V. 10: 1365. https://doi.org/10.3390/plants10071365
  46. Kiba T., Krapp A. Plant Nitrogen Acquisition Under Low Availability: Regulation of Uptake and Root Architecture // Plant Cell Physiol. 2016. V. 57. P. 707. https://doi.org/10.1093/pcp/pcw052
  47. Zhang H., Mallik A., Zeng R.S. Control of Panama disease of banana by rotating and intercropping with Chinese chive (Allium tuberosum Rottler): Role of plant volatiles // J. Chem. Ecol. 2013. V. 39. P. 243. https://doi.org/10.1007/s10886-013-0243-x
  48. Zuo G.W., Li C.Y., Li B., Wei Y.R., Hu C.H., Yang Q.S., Yang J., Sheng O., Kuang R.B., Deng G.M., Biswas M.K., Yi G. The toxic mechanism and bioactive components of Chinese leek root exudates acting against Fusarium oxysporum f. sp. cubense, tropical race 4 // Eur. J. Plant Pathol. 2015. V. 143. P. 447. http://doi: https://doi.org/10.1007/s10658-015-0697-5
  49. Mylona K., Garcia-Cela E., Sulyok M., Medina A., Magan N. Influence of Two Garlic-Derived Compounds, Propyl Propane Thiosulfonate (PTS) and Propyl Propane Thiosulfinate (PTSO), on Growth and Mycotoxin Production by Fusarium Species In Vitro and in Stored Cereals // Toxins. 2019. V. 11: 495. https://doi.org/10.3390/toxins11090495

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (108KB)
3.

Download (369KB)
4.

Download (107KB)
5.

Download (93KB)
6.

Download (192KB)
7.

Download (279KB)
8.

Download (60KB)

Copyright (c) 2022 М.А. Филюшин, Б.Ц. Шагдарова, А.В. Ильина, Е.З. Кочиева, А.В. Щенникова, В.П. Варламов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies