Possible Physiological Mechanisms of Leaf Photodamage in Plants Grown under Continuous Lighting

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Unlike the natural photoperiod that includes the alternation of day and night in the diurnal cycle, continuous (24 h a day) lighting provides uninterrupted supply of light energy required for photosynthesis, permanently promotes photooxidative processes, implies continuous signaling to the photoreceptors, and desynchronizes the internal circadian biorhythms from the external light/dark cycle (circadian asynchrony). The leaves of many plant species grown under constinuous lighting are prone to characteristic and potentially lethal interveinal chlorosis and necrosis. The photodamage of plant leaves exposed to long photoperiods, including daily 24-h illumination was described more than 90 years ago, but the causes of this phenomenon are still not entirely clear. Biological bases underlying this phenomenon are theoretically and practically important, because growing plants under a 24-h photoperiod at a relatively low photon flux density is seemingly an effective way to save resources and increase plant productivity in greenhouses and plant factories with artificial lighting. This review of available literature compiles and evaluates the arguments both supporting and confronting the hypothesis that carbohydrate accumulation, specifically the hyperaccumulation of starch in leaves, is the main cause of photodamage to plants grown under continuous lighting or long photoperiods. The analysis of a large number of studies indicates that the accumulation of carbohydrates is neither the main nor the only cause of leaf injuries in plants grown under a 24-h photoperiod, although the role of this factor in photodamage cannot be ruled out. The appearance and development of photodamage under a 24-h photoperiod is presumably due to several simultaneously acting factors, such as photooxidation, stress-induced senescence, and circadian asynchrony. The contribution of individual factors to photodamage may vary substantially depending on environmental conditions and biological properties of the object (plant species and variety, plant age, and the stage of development).

About the authors

T. G. Shibaeva

Institute of Biology, Karelian Research Center, Russian Academy of Sciences

Email: shibaeva@krc.karelia.ru
Russian Federation, Petrozavodsk

A. V. Mamaev

Institute of Biology, Karelian Research Center, Russian Academy of Sciences

Author for correspondence.
Email: shibaeva@krc.karelia.ru
Russian Federation, Petrozavodsk

A. F. Titov

Institute of Biology, Karelian Research Center, Russian Academy of Sciences

Email: shibaeva@krc.karelia.ru
Russian Federation, Petrozavodsk

References

  1. Demmig-Adams B., Adams W.W. Photoprotection and other responses of plants to high light stress // Ann. Rev. Plant Physiol. Plant Mol. Biol. 1992. V. 43. P. 599. https://doi.org/10.1146/annurev.pp.43.060192.003123
  2. Li Z., Wakao S., Fischer B.B., Niyogi K.K. Sensing and responding to excess light // Ann. Rev. Plant Biol. 2009. V. 60. P. 239. https://doi.org/10.1146/ annurev.arplant.58.032806.103844
  3. Demers D.A., Gosselin A. Growing greenhouse tomato and sweet pepper under supplemental lighting: optimal photoperiod, negative effects of long photoperiod and their causes // Acta Hort. 2002. V. 580. P. 83. https://doi.org/10.17660/ActaHortic.2002.580.9
  4. Sysoeva M.I., Markovskaya E.F., Shibaeva T.G. Plant under continuous light: a review // Plant Stress. 2010. V. 4. P. 5.
  5. Velez-Ramirez A.I., van Ieperen W., Vreugdenhil D., Millenaar F.F. Plants under continuous light // Trends Plant Sci. 2011. V. 16. P. 310. https://doi.org/10.1016/j.tplants.2011.02.003
  6. Arthur J.M. Plant growth in continuous illumination // Biological effects of radiation. V. 2 / Ed. B.M. Duggar. New York: McGraw-Hill Book Company. 1936. P. 715.
  7. Arthur J.W., Guthrie J.D., Newell J.M. Some effects of artificial climates on the growth and chemical composition of plants // Amer. J. Bot. 1930. V. 17. P. 416. https://doi.org/10.2307/2435930
  8. Withrow A.P., Withrow R.B. Photoperiodic chlorosis in tomato // Plant Physiol. 1949. V. 24. P. 657. https://doi.org/10.1104/pp.24.4.657
  9. Hillman W.S. Injury of tomato plants by continuous light and unfavorable photoperiodic cycles // Amer. J. Bot. 1956. V. 43. P. 89. https://doi.org/10.2307/2438816
  10. Ho L.C. The relationship between rates of carbon transport and of photosynthesis in tomato leaves // J. Exp. Bot. 1976. V. 27. P. 87. https://doi.org/10.1093/jxb/27.1.87
  11. Bradley F.M., Janes H.W. Carbon partitioning in tomato leaves exposed to continuous light // Acta Hortic. 1985. V. 174. P. 293. https://doi.org/10.17660/ActaHortic.1985.174.37
  12. Logendra S., Putman J.D., Janes H.W. The influence of light period on carbon partitioning, translocation and growth in tomato // Sci. Hort. 1990. V. 42. P. 75. https://doi.org/10.1016/0304-4238(90)90149-9
  13. Vézina F., Trudel M.J., Gosselin A. Influence du mode d’utilisation de l’éclairage d’appoint sur la productivité et la physiologie de la tomate se serre // Can. J. Plant Sci. 1991. V. 71. P. 923.
  14. Dorais M., Carpentier R., Yelle S., Gosselin A. Adaptability of tomato and pepper leaves to changes in photoperiod: effects on the composition and function of the thylakoid membrane // Physiol. Plant. 1995. V. 94. P. 692. https://doi.org/10.1111/j.1399-3054.1995.tb00986.x
  15. Dorais M., Yelle S., Gosselin A. Influence of extended photoperiod on photosynthate particioning and export in tomato and pepper plants // N. Z. J. Crop Hortic. Sci. 1996. V. 24. P. 29. https://doi.org/10.1080/01140671.1996.9513932
  16. Globig S., Rosen I., Janes H.W. Continuous light effects on photosynthesis and carbon metabolism in tomato // Acta Hort. 1997. V. 418. P. 141. https://doi.org/10.17660/ActaHortic.1997.418.19
  17. Cushman K.E., Tibbitts T.W. The role of ethylene in the development of constant-light injury of potato and tomato // J. Am. Soc. Hort. Sci. 1998. V. 123. P. 239.
  18. Demers D.A., Dorais M, Wien H.C., Gosselin A. Effects of supplemental light duration on greenhouse tomato (Lycopersicon exculentum Mill.) plants and fruit yields // Sci. Hort. 1998. V. 74. P. 295. https://doi.org/10.1016/S0304-4238(98)00097-1
  19. Velez-Ramirez A.I., van Ieperen W., Vreugdenhil D., van Poppel P.M.J.A., Heuvelink E., Millenaar F.F. A single locus confers tolerance to continuous light and allows substantial yield increase in tomato // Nat. Commun. 2014. V. 5. P. 4549. https://doi.org/10.1038/ncomms5549
  20. Velez-Ramirez A.I., Dünner-Planella G., Vreugdenhil D., Millenaar F.F., van Ieperen W. On the induction of injury in tomato under continuous light: circadian asynchrony as the main triggering factor // Funct. Plant Biol. 2017. V. 6. P. 597. https://doi.org/10.1071/FP16285
  21. Velez-Ramirez A., Carreno-Quintero N., Vreugdenhil D., Millenaar F.F., van Ieperen W. Sucrose and starch content negatively correlates with PSII maximum quantum efficiency in tomato (Solanum lycopercicum) exposed to abnormal light/dark cycles and continuous light // Plant Cell Physiol. 2017. V. 58. P. 1339. https://doi.org/10.1093/pcp/pcx068
  22. Matsuda R., Ozawa N., Fujiwara K. Effects of continuous lighting with or without a diurnal temperature difference on photosynthetic characteristics of tomato leaves // Acta Hort. 2012. V. 956. P. 165. https://doi.org/10.17660/ActaHortic.2012.956.16
  23. Matsuda R., Yamano T., Murakami K., Fujiwara K. Effects of spectral distribution and photosynthetic photon flux density for overnight LED light irradiation on tomato seedling growth and leaf injury // Sci. Hort. 2016. V. 198. P. 363. https://doi.org/10.1016/j.scienta.2015.11.045
  24. Hague M.S., Kjaer K.H., Rosenqvist E., Ottosen C.O. Continuous light increases growth, daily carbon gain, antioxidants, and alters carbohydrate metabolism in a cultivated and a wild tomato species // Front. Plant Sci. 2015. V. 6. P. 522. https://doi.org/10.3389/fpls.2015.00522
  25. Hague M., de Sousa A., Soares C., Kjaer K.H., Fidalgo F., Rosenqvist E., Ottosen C.-O. Temperature variation under continuous light restores tomato leaf photosynthesis and maintains the diurnal pattern in stomatal conductance // Front. Plant Sci. 2017. V. 8. P. 1602. https://doi.org/10.3389/fpls.2017.01602
  26. Ikkonen E.N., Shibaeva T.G., Rosenqvist E., Ottosen C.O. Daily temperature drop prevents inhibition of photosynthesis in tomato plants under continuous light // Photosynthetica. 2015. V. 53. P. 114. https://doi.org/10.1007/s11099-015- 0115-4
  27. Shibaeva T.G., Sherudilo E.G. Immediate and delayed effects of diurnal temperature drops on growth and reproductive development of tomato plants grown under continuous lighting // Russ. J. Plant Physiol. 2015. V. 62. P. 328. https://doi.org/10.1134/S1021443715030176
  28. Шибаева Т.Г., Титов А.Ф. Влияние круглосуточного освещения на пигментный комплекс растений сем. Solanaceae // Труды Карельского научного центра РАН. Серия Экспериментальная биология. 2017. № 5. С. 111. https://doi.org/10.17076/eb498
  29. Shibaeva T.G., Mamaev A.V., Sherudilo E.G. Evaluation of a SPAD-502 plus chlorophyll meter to estimate chlorophyll content in leaves with interveinal chlorosis // Russ. J. Plant Physiol. 2020. V. 67. P. 690. https://doi.org/10.1134/S1021443720040160
  30. Shibaeva T.G., Mamaev A.V., Sherudilo E.G. Ikkonen E.N., Titov A.F. Age-related changes in sensitivity of tomato (Solanum lycopersicum L.) leaves to continuous light // Russ. J. Plant Physiol. 2021. V. 68. P. 948. https://doi.org/10.1134/S1021443721040154
  31. Shibaeva T.G., Mamaev A.V., Sherudilo E.G., Titov A.F. The role of photosynthetic daily light integral in plant response to extended photoperiods // Russ. J. Plant Physiol. 2022. V. 69. P. 7. https://doi.org/10.1134/S1021443722010216
  32. Murage E., Watashiro N., Masuda M. Leaf chlorosis and carbon metabolism of eggplant in response to continuous light and carbon dioxide // Sci. Hort. 1996. V. 67. P. 27. https://doi.org/10.1016/S0304-4238(96)00930-2
  33. Murage E.N., Sato Y., Masuda M. Influence of light quality, PPFD and temperature on leaf chlorosis of eggplants grown under continuous illumination // Sci. Hort. 1997. V. 68. P. 73. https://doi.org/ (96)00953-3https://doi.org/10.1016/S0304-4238
  34. Murage E.N., Masuda M. Response of pepper and eggplant to continuous light in relation to leaf chlorosis and activities of antioxidative enzymes // Sci. Hort. 1997. V. 70. P. 269. https://doi.org/10.1016/S0304-4238(97)00078-2
  35. Nilwik H.J.M. Growth analysis of sweet pepper (Capsicum annuum L.). Interacting effects of irradiance, temperature and plant age in controlled conditions // Ann. Bot. V. 48. P. 137. https://doi.org/10.1093/oxfordjournals.aob.a086107
  36. Demers D.A., Gosselin A., Wien H.C. Effects of supplemental light duration on greenhouse sweet pepper plants and fruit yields // J. Amer. Soc Hort. Sci. 1998. V. 123. P. 202. https://doi.org/10.21273/JASHS.123.2.202
  37. Lanoue J., Little C., Hao X. The power of far-red light at night: photomorphogenic, physiological, and yield response in pepper during dynamic 24 hour lighting // Front. Plant Sci. 2022. V. 13. P. 857616. https://doi.org/10.3389/fpls.2022.857616
  38. Wolff S.A., Langerud A. Fruit yield, starch content and leaf chlorosis in cucumber exposed to continuous lighting // Eur. J. Hortic. Sci. 2006. V. 71. P. 259.
  39. Shibaeva T.G., Markovskaya E.F. Growth and development of cucumber Cucumis sativus L. in the prereproductive period under long photoperiods // Russ. J. Dev. Biol. 2013. V. 44. P. 78. https://doi.org/10.1134/S1062360413020082
  40. Wheeler R.M., Tibbitts T.W. Utilization of potatoes for life support systems in space. I. Cultivar-photoperiod interaction // Am. Potato J. 1986. V. 63. P. 315. https://doi.org/10.1007/BF02854441
  41. Wheeler R.M., Tibbitts T.W. Growth and tuberization of potato (Solanum tuberosum L.) under continuous light // Plant Physiol. 1986. V. 80. P. 801. https://doi.org/10.1104/pp.80.3.801
  42. Cao W., Tibbitts T.W. Physiological responses in potato plants under continuous irradiation // J. Am. Soc. Hort. Sci. 1991. V. 116. P. 525. https://doi.org/10.21273/JASHS.116.3.525
  43. Cushman K.E., Tibbitts T.W., Sharkey T.D., Wise R.R. Constant-light injury of potato: temporal and spatial patterns of carbon dioxide assimilation, starch content, chloroplast Integrity, and necrotic lesions // J. Amer. Soc. Hort. Sci. 1995. V. 120. P. 1032. https://doi.org/10.21273/JASHS.120.6.1032
  44. Wheeler R.M. Potato and human exploration of space: some observations from NASA-sponsored controlled environment studies // Potato Res. 2006. V. 49. P. 67. https://doi.org/10.1007/s11540-006-9003-4
  45. Dorais M., Gosselin A. Physiological response of greenhouse vegetable crops to supplemental lighting // Acta Hort. 2002. V. 580. P. 59. https://doi.org/10.17660/ActaHortic.2002.580.6
  46. Matsuda R., Ozawa N., Fujiwara K. Leaf photosynthesis, plant growth, and carbohydrate accumulation of tomato under different photoperiods and diurnal temperature differences // Sci. Hort. 2014. V. 170. P. 150. https://doi.org/10.1016/j.scienta.2014.03.014
  47. Dorais M. Aspects culturaux et physiologiques de la tomate et du poivron de serre soumis à un éclairage d’appoint. Thèse de doctorat faculté des études supérieures. Université Laval, Québec, Canada. 1992.
  48. Demers D.A., Yelle S., Gosselin A. Effects of continuous lighting on enzyme activities of leaf carbon metabolism of tomato and pepper plants // Hort. Sci. 1994. V. 29. P. 250. https://doi.org/10.21273/HORTSCI.29.4.250a
  49. Sawada S., Hayakawa T., Fukushi K., Kasai M. Influence of carbohydrates on photosynthesis in single rooted soybean leaves used as a source-sink model // Plant Cell Physiol. 1986. V. 27. P. 591. https://doi.org/10.1093/oxfordjournals.pcp.a077138
  50. Kerr P.S., Rufty T.W., Huber S.C. Endogenous rhythms in photosynthesis, sucrose phosphate synthase activity, and stomata resistance in leaves of soybeans (Glycine max L. Merr.) // Plant Physiol. 1985. V. 77. P. 275. https://doi.org/10.1104/pp.77.2.275
  51. Layne D.R., Flore J.A. Physiological responses of Prunus cerasus to whole-plant source manipulation. Leaf gas exchange, chlorophyll fluorescence, water relations and carbohydrate concentrations // Physiol. Plant. 1993. V. 88. P. 44. https://doi.org/10.1111/j.1399-3054.1993.tb01758.x
  52. Kalucheva I., Vinarova K. Deformation of chloroplasts upon illumination and darkening of tomato leaves // C. R. Acad. Bulg. Sci. 1969. V. 22. P. 93.
  53. Schaffer A.A., Nerson H., Zamski E. Premature leaf chlorosis in cucumber associated with high starch accumulation // J. Plant Physiol. 1991. V. 138. P. 186. https://doi.org/10.1016/S0176-1617(11)80268-3
  54. Chatterton N.J., Silvius J.E. Photosynthate partitioning into starch in soybean leaves. 1. Effects of photoperiod versus photosynthetic period duration // Plant Physiol. 1979. V. 64. P. 749.
  55. Chatterton N.J., Silvius J.E. Photosynthate partitioning into leaf starch as affected by the daily photosynthetic period duration in six species // Physiol. Plant. 1980. V. 49. P. 141.
  56. Курсанов A.Л. Эндогенная регуляция транспорта ассимилятов и донорно-акцепторные отношения у растений // Физиология растений. 1984. Т. 31. С. 579.
  57. Курсанов А.Л. Эндогенная регуляция транспорта ассимилятов и донор-акцепторные отношения у растений // Передвижение ассимилятов в растениях и проблема сахаронакопления / Под ред. В.А. Печенова. Фрунзе: Илим, 1986. С. 110.
  58. Мокроносов А.Т. Фотосинтетическая функция и целостность растительного организма. М.: Наука, 1983. 64 с.
  59. Van Gestel N.C., Nesbit A.D., Gordon E.P., Green C., Pare P.W., Thompson L., Peffley E.B., Tissue D.T. Continuous light may induce photosynthetic downregulation in onion – consequences for growth and biomass partitioning // Physiol. Plant. 2005. V. 125. P. 235. https://doi.org/10.1111/j.1399-3054.2005.00560.x
  60. Stettler M., Eicke S., Mettler T., Messerli G., Hörtensteiner S., Zeeman S.C. Blocking the metabolism of starch breakdown products in Arabidopsis leaves triggers chloroplast degradation // Mol. Plant. 2009. V. 2. P. 1233. https://doi.org/10.1093/mp/ssp093
  61. Braun D.M., Ma Y., Inada N., Muszynski M.G., Baker R.F. Tie-dyed1 regulates carbohydrate accumulation in maize leaves // Plant Physiol. 2006. V. 142. P. 1511. https://doi.org/10.1104/pp.106.090381
  62. Baker R.F., Braun D.M. Tie-dyed1 functions non-cell autonomously to control carbohydrate accumulation in maize leaves // Plant Physiol. 2007. V. 144. P. 867. https://doi.org/10.1104/pp.107.098814
  63. Baker R.F., Braun D.M. Tie-dyed2 functions with Tie-dyed1 to promote carbohydrate export from maize leaves // Plant Physiol. 2008. V. 146. P. 1085. https://doi.org/10.1104/pp.107.111476
  64. Cushman K.E., Tibbitts T.W. Size of tuber propagule influences injury of “Kennebec” potato plants by constant light // Hort. Sci. 1996. V. 31. P. 1164. https://doi.org/10.21273/HORTSCI.31.7.1164
  65. Demers D.A. Physiologie, photosynthèse et métabolisme carboné de plants de tomate (Lycopersicon esculentum Mill.) et de poivron (Capsicum annuum L.) cultivés sous de longues photoperiods. Thèse de Doctorat, Faculté des Études Supérieures, Université Laval, Ste-Foy, Québec, Canada. 1998.
  66. Galtier N., Foyer C.H., Huber J., Voelker T.A., Huber S.C. Effects of elevated sucrose-phosphate synthase activity on photosynthesis and assimilate partitioning and growth in tomato (Lycopersicon esculentum var UC82B) // Plant Physiol. 1993. V. 101. P. 535. https://doi.org/10.1104/pp.101.2.535
  67. Galtier N., Foyer C.N., Murchie E., Alred R., Quick P., Voelker T.A., Thépenier C., Lascève G., Betsche T. Effects of light and atmospheric carbon dioxide enrichment on photosynthesis and carbon partitioning in the leaves of tomato (Lycopersicon esculentum L.) plants over-expressing sucrose phosphate synthase // J. Exp. Bot. 1995. V. 46. P. 1335. https://doi.org/10.1093/jxb/46.special_issue.1335
  68. Micallef B.J., Haskins K.A., Vanderveer P.J., Roh K.S., Shewmaker C.K., Sharkey T.D. Altered photosynthesis, flowering, and fruiting in transgenic tomato plants that have increased capacity for sucrose synthesis // Planta. 1995. V. 196. P. 327. https://doi.org/10.1007/BF00201392
  69. Lanoue J., Zheng J., Little C., Grodzinski B., Hao X. Continuous light does not compromise growth and yield in mini-cucumber greenhouse production with supplemental led light // Plants. 2021. V. 10. P. 378. https://doi.org/10.3390/plants10020378
  70. Lanoue J., Leonardos E.D., Grodzinski B. Effects of light quality and intensity on diurnal patterns and rates of photo-assimilate translocation and transpiration in tomato leaves // Front. Plant Sci. 2018. V. 9. P. 756. https://doi.org/10.3389/fpls.2018.00756
  71. Ma S., Sun L., Sui X., Li Y., Chang Y., Fan J., Zhang Z. Phloem loading in cucumber: combined symplastic and apoplastic strategies // Plant J. 2019. V. 98. P. 391. https://doi.org/10.1111/tpj.14224
  72. Lemoine R., La Camera S., Atanassova R., Dédaldéchamp F., Allario T., Pourtau N., Bonnemain J.-L., Laloi M., Coutos-Thévenot P., Maurousset L., Faucher M., Girousse Ch., Lemonnier P., Parrilla J., Durand M. Source-to-sink transport of sugar and regulation by environmental factors // Front. Plant Sci. 2013 V. 4. P. 272. https://doi.org/10.3389/fpls.2013.00272
  73. Grodzinski B., Jiao J., Leonardos E.D. Estimating photosynthesis and concurrent export rates in C3 and C4 species at ambient and elevated CO2 // Plant Physiol. 1998. V. 117. P. 207. https://doi.org/10.1104/pp.117.1.207
  74. Stitt M. Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells // Plant Cell Environ. 1991. V. 14. P. 741. https://doi.org/10.1111/j.1365-3040.1991.tb01440.x
  75. Cakmak I., Kirkby E.A. Role of magnesium in carbon partitioning and alleviating photooxidative damage // Physiol. Plant. 2008. V. 133. P. 692. https://doi.org/10.1111/j.1399-3054.2007.01042.x
  76. Krapp A., Quick W.P., Stitt M. Ribulose-1,5-biphosphate carboxylase-oxygenase, other Calvin-cycle enzymes, and chlorophyll decrease when glucose is supplied to mature spinach leaves via the transpiration stream // Planta. 1991. V. 186. P. 58. https://doi.org/10.1007/BF00201498
  77. Foyer C.H., Neukermans J., Queval G., Noctor G., Harbinson J. Photosynthetic control of electron transport and the regulation of gene expression // J. Exp. Bot. 2012. V. 63. P. 1637. https://doi.org/10.1093/jxb/ers013
  78. Van den Ende W., Valluru R. Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? // J. Exp. Bot. 2009. V. 60. P. 9. https://doi.org/10.1093/jxb/ern297
  79. Nott A., Jung H.-S., Koussevitzky S., Chory J. Plastid-to-nucleus retrograde signaling // Annu. Rev. Plant Biol. 2006. V. 57. P. 739. https://doi.org/10.1146/annurev.arplant.57.032905.105310
  80. Inaba T. Bilateral communication between plastid and the nucleus: plastid protein import and plastid-to-nucleus retrograde signaling // Biosci. Biotechnol. Biochem. 2010. V. 74. P. 471. https://doi.org/10.1271/bbb.90842
  81. Ruckle M.E., DeMarco S.M., Larkin R.M. Plastid signals remodel light signaling networks and are essential for efficient chloroplast biogenesis in Arabidopsis // Plant Cell. 2007. V. 19. P. 3944. https://doi.org/10.1105/tpc.107.054312
  82. Ruckle M.E., Burgoon L.D., Lawrence L.A., Sinkler C.A., Larkin R.M. Plastids are major regulators of light signaling in Arabidopsis // Plant Physiol. 2012. V. 159. P. 366. https://doi.org/10.1104/pp.112.193599
  83. Lepistö A., Rintamäki E. Coordination of plastid and light signaling 609 pathways upon development of arabidopsis leaves under various photoperiods // Mol. Plant. 2012. V. 5. P. 799. https://doi.org/10.1093/mp/ssr106
  84. Lanoue J., Zheng J., Little C., Thibodeau A., Grodzinski B., Hao X. Alternating red and blue light-emitting diodes allows for injury-free tomato production with continuous lighting // Front. Plant Sci. 2019. V. 10. P. 1114. https://doi.org/10.3389/fpls.2019.01114
  85. Lanoue J., Thibodeau A., Little C., Zheng J., Grodzinski B., Hao X. Light spectra and root stocks affect response of greenhouse tomatoes to long photoperiod of supplemental lighting // Plants. 2021. V. 10. P. 1674. https://doi.org/10.3390/ plants10081674
  86. Peter E., Rothbart M., Oelze M.-L., Shalygo N., Dietz K.-J., Grimm B. Mg protoporphyrin monomethylester cyclase deficiency and effects on tetrapyrrole metabolism in different light conditions // Plant Cell Physiol. 2010. V. 51. P. 1229. https://doi.org/10.1093/pcp/pcq071
  87. Graf A., Schlereth A., Stitt M., Smith A.M. Circadian control of carbohydrate availability for growth in Arabidopsis plants at night // Proc. Natl. Acad. Sci. USA 2010. V. 107. P. 9458. https://doi.org/10.1073/pnas.0914299107
  88. Weise S.E., Schrader S.M., Kleinbeck K.R., Sharkey T.D. Carbon balance and circadian regulation of hydrolytic and phosphorolytic breakdown of transitory starch // Plant Physiol. 2006. V. 141. P. 879. https://doi.org/10.1104/pp.106.081174
  89. Lu Y., Gehan J.P., Sharkey T.D. Daylength and circadian effects on starch degradation and maltose metabolism // Plant Physiol. 2005. V. 138. P. 2280. https://doi.org/10.1104/pp.105.061903
  90. James A.B., Monreal J.A., Nimmo G.A., Kelly C.L., Herzyk P., Jenkins G.I., Nimmo H.G. The circadian clock in Arabidopsis roots is a simplified slave version of the clock in shoots // Science. 2008. V. 322. P. 1832. https://doi.org/10.1126/science.11614
  91. Zeeman S.C., Delatte T., Messerli G., Umhang M., Stettler M., Mettler T., Streb S., Reinhold H., Kotting O. Starch breakdown: recent discoveries suggest distinct pathways and novel mechanisms // Func. Plant Biol. 2007. V. 34. P. 465. https://doi.org/10.1071/FP06313
  92. Pham D.M., Chun C. Growth and leaf injury in tomato plants under continuous light at different settings of constant and diurnally varied photosynthetic photon flux densities // Sci. Hort. 2020. V. 269. P. 109347. https://doi.org/10.1016/j.scienta.2020.109347
  93. Wingler A., Masclaux-Daubresse C., Fischer A.M. Sugars, senescence, and ageing in plants and heterotrophic organisms // J. Exp. Bot. 2009. V. 60. P. 1063. https://doi.org/10.1093/jxb/erp067
  94. Lim P.O., Kim H.J., Gil Nam H. Leaf senescence // Annu. Rev. Plant Biol. 2007. V. 58. P. 115. https://doi.org/10.1146/annurev.arplant.57.032905.105316
  95. Van Doorn W.G. Is the onset of senescence in leaf cells of intact plants due to low or high sugar levels? // J. Exp. Bot. 2008. V. 59. P. 1963. https://doi.org/10.1093/jxb/ern076
  96. Noodén L.D. The phenomena of senescence and aging // Senescence and aging in plants / Eds. L.D. Noodén, A.C. Leopold. San Diego, CA: Academic Press. 1988. 50 p.
  97. Cushman K.E., Tibbitts T.W. Root-zone temperature effects on continuous irradiation injury on potato // Hort. Sci. 1991. V. 26. P. 745.
  98. Tibbitts T.W., Bennett S.M., Cao W. Control of continuous irradiation injury on potato with daily temperature cycling // Plant Physiol. 1990. V. 93. P. 409. https://doi.org/10.1104/pp.93.2.409
  99. Cao W., Tibbitts T.W. Temperature cycling periods affect growth and tuberization in potatoes under continuous light // Hort. Sci. 1992. V. 27. P. 344. https://doi.org/10.21273/HORTSCI.27.4.344

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (434KB)
3.

Download (562KB)
4.

Download (102KB)

Copyright (c) 2023 Т.Г. Шибаева, А.В. Мамаев, А.Ф. Титов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies