The Influence of Skin Effect on Frequency Dependence of Dynamic Permeability in Ferromagnetic Films

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The influence of the skin effect on the frequency dependence of the permeability of ferromagnetic films is studied. Analytical expressions for the dynamic permeability of the film are obtained in cases of weak and strong skin effect. It is shown that for a thin film, the skin effect leads to an increase in the width of the peak of the frequency dependence of the imaginary part of the permeability. In the case of a strong skin effect, the film permeability can be represented as two terms corresponding to the Lorentz frequency dispersion law. Analysis of experimental data on Fe–N films shows that the contribution of the skin effect to the frequency dependence of the permeability is small for films less than 750 nm thick.

About the authors

A. V. Osipov

Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences

Moscow, 125412 Russia

N. A. Buznikov

Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences

Email: n_buznikov@mail.ru
Moscow, 125412 Russia

I. V. Komarov

Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences

Moscow, 125412 Russia

S. A. Maklakov

Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences

Moscow, 125412 Russia

S. S. Maklakov

Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences

Moscow, 125412 Russia

K. N. Rozanov

Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences

Moscow, 125412 Russia

A. O. Shiryaev

Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences

Moscow, 125412 Russia

References

  1. Jiang X., Zhang J., Song X., Wang H., Zhang K., He Z., Wu C., Yu Z., Lan Z., Sun K. Tunable resonance frequency of NiFe thin films by oblique deposition // J. Magn. Magn. Mater. 2002. V. 547. P. 168946.
  2. Izotov A.V., Belyaev B.A., Boev N.M., Burmitskikh A.V., Leksikov A.A., Skomorokhov G.V., Solovev P.N. Tailoring the microwave properties of thin Permalloy films using a periodically grooved substrate // Physica B. 2022. V. 629. P. 413654.
  3. Goldman S., Celinski Z. Magnetic properties of (Ni0.81Fe0.19/SiO2)n multilayers for high frequency on-wafer inductor applications // J. Magn. Magn. Mater. 2023. V. 569. P. 170440.
  4. Li Q., Jiang Y., Wu C., Jiang X., Li Z., Sun K., Lan Z., Yu Z. Tailoring the in-plane magnetic anisotropy and permeability spectra of obliquely deposited Fe40Co40B20 films for 5G communications // J. Magn. Magn. Mater. 2023. V. 578. P. 170811.
  5. Lei T., Zhang W., Bo G., Feng C., Li N., Zhao R., Ji L., Zhang J., Zhang X. Tuning the ferromagnetic resonance frequency of microstructured permalloy film on flexible substrate // Phys. Status Solidi RRL. 2024. V. 18. P. 2400081.
  6. Liu J., Zhang Y., Zhang Y., Dai B., Ren Y., Chen M. Improvement of high-frequency magnetic properties of CoFeB thin film using oblique deposition for spin wave electronic devices // J. Mater. Sci.: Mater. Electron. 2024. V. 35. No. 4. P. 281.
  7. Kumar P., Kumar R., Sharma V., Khanna M.K., Kuanr B.K. Influence of growth temperature on the magnetization dynamics of sputtered CoFeB thin films on various substrates and their microwave device functionality // J. Alloys Compd. 2024. V. 988. P. 174314.
  8. Perrin G., Acher O., Peuzin J.C., Vucadinovic N. Sum rules for gyromagnetic permeability of ferromagnetic thin films: Theoretical and experimental results // J. Magn. Magn. Mater. 1996. V. 157/158. P. 289–290.
  9. Acher O., Adenot A.L. Bounds on the dynamic properties of magnetic materials // Phys. Rev. B. 2000. V. 62. No. 17. P. 11324–11327.
  10. Acher O., Queste S., Ledieu M., Barholz K.-U., Mattheis R. Hysteretic behavior of the dynamic permeability on a Ni-Fe thin film // Phys. Rev. B. 2003. V. 68. No. 18. P. 184414.
  11. Lagarkov A.N., Rozanov K.N., Simonov N.A., Starostenko S.N. Microwave permeability of magnetic films. In: Handbook of Advanced Magnetic Materials / Ed. by Y. Liu, D.J. Sellmyer, D. Shindo. Boston, MA, US: Springer, 2006. P. 1742–1773.
  12. Van de Riet E., Roozeboom F. Ferromagnetic resonance and eddy currents in high-permeable thin films // J. Appl. Phys. 1997. V. 81. No. 1. P. 350–354.
  13. Iakubov I.T., Lagarkov A.N., Maklakov S.A., Osipov A.V., Rozanov K.N., Ryzhikov I.A., Simonov N.A., Starostenko S.N. Experimental study of microwave permeability of thin Fe films // J. Magn. Magn. Mater. 2003. V. 258–259. P. 195–197.
  14. Seemann K., Leiste H., Bekker V. New theoretical approach to the RF-dynamics of soft magnetic FeTaN films for CMOS components // J. Magn. Magn. Mater. 2004. V. 278. № 1–2. P. 200–207.
  15. Viegas A.D.C., Corrêa M.A., Santi L., da Silva R.B., Bohn F., Carara M., Sommer R.L. Thickness dependence of the high-frequency magnetic permeability in amorphous Fe73.5Cu1Nb3Si13.5B9 thin films // J. Appl. Phys. 2007. V. 101. No. 3. P. 033908.
  16. Acher O., Dubourg S., Duverger F., Malléjac N. GHz permeability of soft CoZr films: the role of exchange–conductivity coupling // J. Magn. Magn. Mater. 2007. V. 310. No. 2. P. 2319–2321.
  17. Acher O., Dubourg S. Generalization of Snoek’s law to ferromagnetic films and composites // Phys. Rev. B. 2008. V. 77. No. 10. P. 104440.
  18. Neo C.P., Ding J. An algorithm to extract effective magnetic parameters of thin film with in-plane uniaxial magnetic anisotropy // J. Appl. Phys. 2010. V. 107. No. 9. P. 09C507.
  19. Li T., Wang Y., Shi H., Xi L., Xue D. Impact of skin effect on permeability of Permalloy films // J. Magn. Magn. Mater. 2022. V. 545. P. 168750.
  20. Li T., Yang D., Jin X., Xi L., Xue D. New characteristic parameter of energy loss in permalloy // New J. Phys. 2024. V. 26. No. 1. P. 013007.
  21. Rozanov K.N., Koledintseva M.Y. Application of generalized Snoek’s law over a finite frequency range: A case study // J. Appl. Phys. 2016. V. 119. No. 7. P. 073901.
  22. Wu M., Zhang Y.D., Hui S., Xiao T.D., Ge S., Hines W.A., Budnick J.I., Taylor G.W. Microwave magnetic properties of Co50/(SiO2)50 nanoparticles // Appl. Phys. Lett. 2002. V. 80. No. 23. P. 4404–4406.
  23. Qiao L., Wen F., Wei J., Wang J., Li F. Microwave permeability spectra of flake-shaped FeCuNbSiB particle composites // J. Appl. Phys. 2008. V. 103. No. 6. P. 063903.
  24. Zezyulina P.A., Iakubov I.T., Lagarkov A.N., Maklakov S.A., Maklakov S.S., Naboko A.S., Osipov A.V., Petrov D.A., Rozanov K.N., Ryzhikov I.A. The effect of the perpendicular anisotropy and eddy currents on the microwave performance of single-layer and multi-layer permalloy films // IEEE Magn. Lett. 2016. V. 7. P. 3705804.
  25. Бозорт Р. Ферромагнетизм. М.: Изд-во иностр. литературы, 1956. 784 с.
  26. Lagarkov A.N., Iakubov I.T., Ryzhikov I.A., Rozanov K.N., Perov N.S., Elsukov E.P., Maklakov S.A., Osipov A.V., Sedova M.V., Getman A.M., Ul’yanov A.L. Fe–N films: Morphology, static and dynamic magnetic properties // Physica B. 2007. V. 394. No. 2. P. 159–162.
  27. Iakubov I.T., Kashurkin O.Yu., Lagarkov A.N., Maklakov S.A., Osipov A.V., Rozanov K.N., Ryzhikov I.A., Starostenko S.N. A contribution from the magnetoelastic effect to measured microwave permeability of thin ferromagnetic films // J. Magn. Magn. Mater. 2012. V. 324. No. 21. P. 3385–3388.
  28. Маклаков С.С., Маклаков С.А., Набоко А.С., Полозов В.И., Амеличев В.А., Рыжиков И.А. Электрохимическая коррозия тонких ферромагнитных пленок Fe–N в нейтральном растворе // Известия Академии наук. Серия химическая. 2017. № 3. С. 457–462.
  29. Розанов К.Н., Симонов Н.А., Осипов А.В. Измерение СВЧ магнитной проницаемости пленок // Радиотехника и электроника. 2002. Т. 47. № 2. С. 210–216.

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».