Superconducting and magnetic properties changes of complex rhodium borides RERh3.8Ru0.2B4 in the series of RE = (Gd, Dy, Ho, Er, Y)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Magnetic properties and superconducting characteristics of borides RERh3.8Ru0.2B4 with LuRu4B4 type structure (RE = Y, Er, Ho, Dy), as well as compounds GdRh3.8Ru0.2B4 have been investigated in order to establish formation patterns of superconducting and magnetic subsystems in presented compounds, and their mutual influence. The analysis showed that there is no direct relationship between the critical temperature (Tc) of RERh3.8Ru0.2B4 compounds and their magnetic subsystem. However, a monotonic decrease in the RERh3.8Ru0.2B4 borides critical temperature at successive replacement of RE with Y by Er, Ho, Dy has been established. In this case, the Tc depends linearly on S(S+1), where S is the spin quantum number of the RE+3 ion. Such critical temperature behavior can be associated with the exchange interaction of the conduction electrons spins with the magnetic moments of the RE+3 ions, which increases as the spin quantum number S of the ion increases. The absence of superconductivity in the GdRh3.8Ru0.2B4 compound is also within the established pattern.

About the authors

S. A. Lachenkov

Baikov Institute of Metallurgy and Materials Science

Lenin Ave, 49, Moscow, 119334 Russia

V. A. Vlasenko

P.N. Lebedev Physical Institute

Email: vlasenkovlad@gmail.com
Lenin Ave, 53, Moscow, 119334 Russia

A. Y. Tsvetkov

P.N. Lebedev Physical Institute

Lenin Ave, 53, Moscow, 119334 Russia

L. F. Kulikova

Institute for High Pressure Physics

Kaluga Highway, bld. 14, Troitsk, 108840 Russia

References

  1. Maple M.B., Fischer O. Superconductivity in Ternary Compounds II. Superconductivity and Magnetism. N.Y.: Springer-Verlag, 1982. P. 308.
  2. Wolowiec C.T., White B.D., Maple M.B. Conventional Magnetic Superconductors // Physica C: Superconductivity Appl. 2015. V. 514. P. 113–129. https://doi.org/10.1016/j.physc.2015.02.050
  3. Johnston D.C. Superconductivity in a New Ternary Structure Class of Boride Compounds // Solid State Commun. 1977. V. 24. No. 10. P. 699–702. https://doi.org/10.1016/0038-1098(77)90078-3
  4. Yvon K., Johnston D.C. Orthorhombic LuRh4B4–a New Polytype of RT4B4 Stoichiometry // Acta Crystal. Sect. B: Struct. Sci. 1982. V. 38. No. 1. P. 247–250. https://doi.org/10.1107/S0567740882002490
  5. Matthias B.T., Corenzwit E., Vandenberg J.M., Barz H.E. High Superconducting Transition Temperatures of New Rare Earth Ternary Borides // Proc. Natl. Acad. Sci. USA. 1977. V. 74. No. 4. P. 1334–1335. https://doi.org/10.1073/pnas.74.4.1334
  6. Jatmika J., Maruyama H., Rahman M.S., Sakai A., Nakatsuji S., Iyo A., Ebihara T. Superconducting Properties of the Ternary Boride YRh4B4 // Supercond. Sci. Technol. 2020. V. 33. No. 12. P. 125006. https://doi.org/10.1088/1361-6668/abbb18
  7. Majkrzak C.F., Cox D.E., Shirane G., Mook H.A., Hamaker H.C., MacKay H.B., Fisk Z., Maple M.B. Neutron-diffraction Study of the Magnetic Ordering in Superconducting NdRh4B4 // Phys. Rev. B: Condens. Matter. 1982. V. 26. No. 1. P. 245–249. https://doi.org/10.1103/PhysRevB.26.245
  8. Hamaker H.C., Woolf L.D., MacKay H.B., Fisk Z., Maple M.B. Possible Observation of the Coexistence of Superconductivity and Long-range Magnetic Order in NdRh4B4 // Solid State Commun. 1979. V. 31. No. 3. P. 139–144. https://doi.org/10.1016/0038-1098(79)90422-8
  9. Kumagai K., Ooyama T., Nakajima H., Shimotomai M. Superconducting and Magnetic Properties of CeRh4B4 and PrRh4B4 // Physica B+C. 1987. V. 148. P. 133–136. https://doi.org/10.1016/0378-4363(87)90176-8
  10. Kurata K., Muranaka T. Superconducting Properties of Pt-type and Bct-type YRh4B4 // Supercond. Sci. Technol. 2023. V. 36. No. 8. P. 085005. https://doi.org/10.1088/1361-6668/acd7ac
  11. Burkhanov G.S., Lachenkov S.A., Khlybov E.P. Anomalous Rise of the Upper Critical Field Upon Magnetic Ordering of the DyRh4B4 superconductor // Dokl. Phys. 2009. V. 54. No. 6. P. 265–268. https://doi.org/10.1134/S1028335809060032
  12. Köhler A., Behr G., Fuchs G., Nenkov K., Gupta L.C. Si-induced Superconductivity and Structural Transformations in DyRh4B4 // J. Alloys Compd. 2009. V. 482. No. 1–2. P. 5–9. https://doi.org/10.1016/j.jallcom.2009.04.040
  13. Vandenberg J., Matthias B. Clustering Hypothesis of Some High-Temperature Superconductors // Science. 1977. V. 198. P. 194–196.
  14. Https://doi.org/10.1126/science.198.4313.194
  15. Буздин А.И., Булаевский Л.Н., Кулич М.Л., Панюков С.В. Магнитные сверхпроводники // УФН. 1984. Т. 144. Вып. 4. С. 597–641.
  16. Https://doi.org/10.3367/UFNr.0144.198412b.0597
  17. Usman M., Zhou X., Malliakas C.D., Welp U., Kwok W.K., Chung D.Y., Kanatzidis M.G. Probing Phosphorus Solubility and Its Effect on Critical Temperature (Tc) in the Helical Superconducting Magnet RbEuFe4As4–xPx // Chem. Mater. 2023. V. 35. No. 20. P. 8494–8501. https://doi.org/10.1021/acs.chemmater.3c01310
  18. Prando G., Torsello D., Sanna S., Graf M.J., Pyon S., Tamegai T., Carretta P., Ghigo G. Complex Vortex-Antivortex Dynamics in the Magnetic Superconductor EuFe2(As0.7P0.3)2 // Phys. Rev. B. 2022. V. 105. No. 22. P. 224504. https://doi.org/10.1103
  19. Mazumdar C., Gupta L. C. Discovery of Superconducting Quaternary Y–Ni–B–C System, Tc∼ 12 K, and a Brief Review of Superconducting and Magnetic Properties of RNi2B2C // Supercond. Sci. Technol. 2022. V. 35. No. 9. P. 094001. https://doi.org/10.1088/1361-6668/ac7dcc
  20. Кудреватых Н.В., Волегов А.С. Магнетизм редкоземельных металлов и их интерметаллических соединений. Екатеринбург: Изд-во Уральского ун-та, 2015. С. 198.
  21. Matthias B.T., Suhl H., Corenzwit E. Spin Exchange in Superconductors // Phys. Rev. Lett. 1958. V. 1. No. 3. P. 92–94. https://doi.org/10.1103/PhysRevLett.1.92
  22. Алексеевский Н.Е., Гарифуллин И.А., Кочелаев Б.И., Харахашьян Э.Г. Об упорядочении магнитной примеси в сверхпроводнике // Письма в ЖЭТФ. 1976. Т. 24. В. 10. С. 540–543.
  23. Johnston D.C. Nonmagnetic Contributions to the Variation of Tc with RE in RE(Rh,Ru)4B4 Compounds // Physica B+C. 1981. V. 108. Iss. 1–3. P. 755–756. https://doi.org/10.1016/0378-4363(81)90682-3
  24. Девятых Г.Г., Бурханов Г.С. Высокочистые тугоплавкие и редкие металлы. М.: Наука, 1993. С. 223.
  25. Бурханов Г.С., Лаченков С.А., Власенко В.А., Хлыбов Е.П., Гаврилкин С.Ю. Особенности магнитных свойств и критических токов сверхпроводящих боридов родия YRh4B4 и HoRh3.8Ru0.2B4 // Неорганич. материалы. 2021. Т. 57. № 7. C. 720–726. https://doi.org/10.31857/S0002337X21070022
  26. Лаченков С.А., Власенко В.А., Цветков А.Ю., Дементьев В.А. Магнитные свойства и критические свойства сверхпроводников Dy0.8Er0.2Rh3.8Ru0.2B4 и Dy0.6Er0.4Rh3.8Ru0.2B4 // Неорганич. материалы. 2023. Т. 59. № 1. C. 39–45. https://doi.org/10.31857/S0002337X2301013X
  27. Бурханов Г.С., Лаченков С.А., Хлыбов Е.П. Анализ взаимосвязи магнитной и сверхпроводящей подсистем соединений RE(Rh1 — xRux)4B4 на примере DyRh3,8Ru0,2B4 и HoRh3.8Ru0.2B4 // ДАН. 2015. Т. 460. № 4. С. 398–402. https://doi.org/10.7868/S0869565215040088
  28. Бурханов Г.С., Лаченков С.А., Хлыбов Е.П. Влияние магнитной подсистемы на усиление сверхпроводимости в тройных боридах родия // ДАН. 2011. Т. 438. № 5. С. 619–622.

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).