Atomic probe tomography study of the effect of thermal aging on the nanostructure of oxide dispersion-strengthened steels
- Authors: Rogozhkin S.V.1,2, Klauz A.V.1,2, Khalyavina A.A.1,2, Bogachev A.A.1,2, Raznitsyn O.A.1,2, Nikitin A.A.1,2, Lukyanchuk A.A.1,2, Shutov A.S.1,2, Zaluzhnyi A.G.1,2
-
Affiliations:
- National Research Center “Kurchatov Institute”
- National Research Nuclear University “MEPhI”
- Issue: Vol 126, No 1 (2025)
- Pages: 58-68
- Section: СТРУКТУРА, ФАЗОВЫЕ ПРЕВРАЩЕНИЯ И ДИФФУЗИЯ
- URL: https://journals.rcsi.science/0015-3230/article/view/288548
- DOI: https://doi.org/10.31857/S0015323025010073
- EDN: https://elibrary.ru/BZSJGJ
- ID: 288548
Cite item
Abstract
In the present work, the effect of thermal aging on the nanostructure of three oxide dispersion-strengthened steels with different alloying systems: Eurofer ODS, 10Cr ODS and KP-3 ODS was investigated by atom probe tomography. The investigated steels were aged at 650°C for 500 and 1000 h. Nanoscale clusters enriched in Y, O and Cr, as well as in V, Ti and Al depending on the alloying system of the steel were found in all states. Investigation of the changes in the nanostructure of steels after thermal aging for 500 h showed a significant increase in the number density of clusters in all steels, while after 1000 h aging their number density decreased in Eurofer ODS and 10Cr ODS, or remained at the same level in KP-3 ODS. At 500 h, the retention (10Cr ODS, KP-3 ODS) or increase (Eurofer ODS) of the average cluster size was also observed, while at 1000 h the average size was stable in Eurofer ODS and 10Cr ODS, or experienced a slight decrease in KP-3 ODS. Analysis of the nanostructure change showed first an increase in the number density of clusters (while maintaining or increasing the average size) in all steels during aging up to 500 h, corresponding to the nucleation stage of new clusters. After aging for 1000 h, a decrease in number density was found, corresponding to the maturation stage. These tendencies are also confirmed by analyzing the changes in the concentration of chemical elements in the matrix.
About the authors
S. V. Rogozhkin
National Research Center “Kurchatov Institute”; National Research Nuclear University “MEPhI”
Author for correspondence.
Email: Sergey.Rogozhkin@itep.ru
Russian Federation, Moscow, 123182; Moscow, 115409
A. V. Klauz
National Research Center “Kurchatov Institute”; National Research Nuclear University “MEPhI”
Email: Sergey.Rogozhkin@itep.ru
Russian Federation, Moscow, 123182; Moscow, 115409
A. A. Khalyavina
National Research Center “Kurchatov Institute”; National Research Nuclear University “MEPhI”
Email: Sergey.Rogozhkin@itep.ru
Russian Federation, Moscow, 123182; Moscow, 115409
A. A. Bogachev
National Research Center “Kurchatov Institute”; National Research Nuclear University “MEPhI”
Email: Sergey.Rogozhkin@itep.ru
Russian Federation, Moscow, 123182; Moscow, 115409
O. A. Raznitsyn
National Research Center “Kurchatov Institute”; National Research Nuclear University “MEPhI”
Email: Sergey.Rogozhkin@itep.ru
Russian Federation, Moscow, 123182; Moscow, 115409
A. A. Nikitin
National Research Center “Kurchatov Institute”; National Research Nuclear University “MEPhI”
Email: Sergey.Rogozhkin@itep.ru
Russian Federation, Moscow, 123182; Moscow, 115409
A. A. Lukyanchuk
National Research Center “Kurchatov Institute”; National Research Nuclear University “MEPhI”
Email: Sergey.Rogozhkin@itep.ru
Russian Federation, Moscow, 123182; Moscow, 115409
A. S. Shutov
National Research Center “Kurchatov Institute”; National Research Nuclear University “MEPhI”
Email: Sergey.Rogozhkin@itep.ru
Russian Federation, Moscow, 123182; Moscow, 115409
A. G. Zaluzhnyi
National Research Center “Kurchatov Institute”; National Research Nuclear University “MEPhI”
Email: Sergey.Rogozhkin@itep.ru
Russian Federation, Moscow, 123182; Moscow, 115409
References
- Klueh R.L., Shingledecker J.P., Swindeman R.W., Hoelzer D.T. Oxide dispersion-strengthened steels: A comparison of some commercial and experimental alloys // J. Nuclear Mater. 2005. V. 341. P. 103–114.
- Schneibel J.H., Liu C.T., Miller M.K., Mills M.J., Sarosi P., Heilmaier M., Sturm D. Ultrafine-grained nanocluster-strengthened alloys with unusually high creep strength // Scripta Mater. 2009. V. 61. № 8. P. 793–796.
- Odette G.R. On the status and prospects for nanostructured ferritic alloys for nuclear fission and fusion application with emphasis on the underlying science // Scripta Mater. 2018. V. 143. P. 142–148.
- Beatty T.G., Millan P.P. Progress in the Utilization of an Oxide-Dispersion-Strengthened Alloy for Small Engine Turbine Blades // Aerospace Congress and Exposition. 1984. P. 841512.
- Toloczko M.B., Gelles D.S., Garner F.A., Kurtz R.J., Abe K. Irradiation creep and swelling from 400 to 600 °C of the oxide dispersion strengthened ferritic alloy MA957 // J. Nuclear Mater. 2004. V. 329–333. P. 352–355.
- Pint B.A., Dryepondt S., Unocic K.A., Hoelzer D.T. Development of ODS FeCrAl for Compatibility in Fusion and Fission Energy Applications // JOM. 2014. V. 66. № 12. P. 2458–2466.
- Ukai S., Fujiwara M. Perspective of ODS alloys application in nuclear environments // J. Nuclear Mater. 2002. V. 307–311. P. 749–757.
- Li Y., Nagasaka T., Muroga T., Kimura A., Ukai S. High-temperature mechanical properties and microstructure of 9Cr oxide dispersion strengthened steel compared with RAFMs // Fusion Eng. Design. 2011. V. 86. № 9–11. P. 2495–2499.
- Certain A., Kuchibhatla S., Shutthanandan V., Hoelzer D.T., Allen T.R. Radiation stability of nanoclusters in nano-structured oxide dispersion strengthened (ODS) steels // J. Nuclear Mater. 2013. V. 434. № 1–3. P. 311–321.
- He J., Wan F., Sridharan K., Allen T.R., Certain A., Shutthanandan V., Wu Y.Q. Stability of nanoclusters in 14YWT oxide dispersion strengthened steel under heavy ion-irradiation by atom probe tomography // J. Nuclear Mater. 2014. V. 455. № 1–3. P. 41–45.
- Yano K.H., Swenson M.J., Wu Y., Wharry J.P. TEM in situ micropillar compression tests of ion irradiated oxide dispersion strengthened alloy // J. Nuclear Mater. 2017. V. 483. P. 107–120.
- Lescoat M.-L., Ribis J., Chen Y., Marquis E.A., Bordas E., Trocellier P., Serruys Y., Gentils A., Kaïtasov O., de Carlan Y., Legris A. Radiation-induced Ostwald ripening in oxide dispersion strengthened ferritic steels irradiated at high ion dose // Acta Mater. 2014. V. 78. P. 328–340.
- Rogozhkin S.V., Klauz A.V., Ke Y., Almásy L., Nikitin A.A., Khomich A.A., Bogachev A.A., Gorshkova Y.E., Bokuchava G.D., Kopitsa G.P., Sun L. Study of Precipitates in Oxide Dispersion-Strengthened Steels by SANS, TEM, and APT // Nanomaterials. 2024. V. 14. № 2. P. 194.
- Рогожкин С.В., Алеев А.А., Залужный А.Г., Искандаров Н.А., Никитин А.А., Vladimirov P., Lindau R., Moslang A. Томографическое атомно-зондовое исследование наномасштабных особенностей дисперсно-упрочненной стали ODS EUROFER в исходном состоянии и после облучения нейтронами // ФММ. 2012. Т. 113. № 1. С. 104–104.
- Gil E., Ordás N., García-Rosales C., Iturriza I. Microstructural characterization of ODS ferritic steels at different processing stages // Fusion Eng. Design. 2015. V. 98–99. P. 1973–1977.
- Swenson M.J., Dolph C.K., Wharry J.P. The effects of oxide eVution on mechanical properties in proton- and neutron-irradiated Fe-9%Cr ODS steel // Journal of Nuclear Materials. 2016. V. 479. P. 426–435.
- Deschamps A., De Geuser F., Malaplate J., Sornin D. When do oxide precipitates form during consolidation of oxide dispersion strengthened steels? // J. Nuclear Mater. 2016. V. 482. P. 83–87.
- Dawson K., Haigh S.J., Tatlock G.J., Jones A.R. Nano-particle precipitation in mechanically alloyed and annealed precursor powders of legacy PM2000 ODS alloy // J. Nuclear Mater. 2015. V. 464. P. 200–209.
- Rogozhkin S.V., Klauz A.V., Bogachev A.A., Khomich A.A., Fedin P.A., Raznitsyn O.A. Comprehensive Study of the Impact of Iron-Ion Irradiation at 500°C on the Nanostructure of Oxide Dispersion-Strengthened Steels // J. of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2023. V. 17. № S1. P. S289–S299.
- Рогожкин С.В., Клауз А.В., Богачев А.А., Хомич А.А., Федин П.А., Разницын О.А. Влияние облучения ионами Fe на наноструктуру дисперсно-упрочненных оксидами сталей при 500°C // Ядерная физика и инжиниринг. 2022. Т. 13. № 6. С. 535–544.
- Murty K.L., Charit I. Structural materials for Gen-IV nuclear reactors: Challenges and opportunities // J. Nuclear Mater. 2008. V. 383. Structural materials for Gen-IV nuclear reactors. № 1–2. P. 189–195.
- Zinkle S.J., Boutard J.L., Hoelzer D.T., Kimura A., Lindau R., Odette G.R., Rieth M., Tan L., Tanigawa H. Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications // Nuclear Fusion. 2017. V. 57. № 9. P. 092005.
- Zinkle S.J., Snead L.L. Designing Radiation Resistance in Materials for Fusion Energy // Annual Rev. Mater. Research. 2014. V. 44. № 1. P. 241–267.
- Lindau R., Möslang A., Schirra M., Schlossmacher P., Klimenkov M. Mechanical and microstructural properties of a hipped RAFM ODS-steel // J. Nuclear Mater. 2002. V. 307–311. P. 769–772.
- Lindau R., Möslang A., Rieth M., Klimiankou M., Materna-Morris E., Alamo A., Tavassoli A.-A.F., Cayron C., Lancha A.-M., Fernandez P., Baluc N., Schäublin R., Diegele E., Filacchioni G., Rensman J.W., Schaaf B. v. d., Lucon E., Dietz W. Present development status of EUROFER and ODS-EUROFER for application in blanket concepts // Fusion Eng. Design. 2005. V. 75–79. P. 989–996.
- Kimura A. Irradiation tolerance and ion irradiation effects on nano-oxide dispersion strengthened steels / in the frameworks of Coordinated Research Project ‘Accelerator Simulation and Theoretical Modelling of Radiation Effects in Structural Materials. Vienna: International Atomic Energy Agency. Vienna, 2018.
- Kimura A., Kasada R., Iwata N., Kishimoto H., Zhang C.H., Isselin J., Dou P., Lee J.H., Muthukumar N., Okuda T., Inoue M., Ukai S., Ohnuki S., Fujisawa T., Abe T.F. Development of Al added high-Cr ODS steels for fuel cladding of next generation nuclear systems // J. Nuclear Mater. 2011. V. 417. № 1–3. P. 176–179.
- Noh S., Choi B.-K., Han C.-H., Kang S.H., Jang J., Jeong Y.-H., Kim T.K. Effects of heat treatments on microstructures and mechanical properties of dual phase ods steels for high temperature strength // Nuclear Eng. Technology. 2013. V. 45. № 6. P. 821–826.
- Jeong Y.H., Kim W.J., Kim D.J., Jang J., Kang S.H., Chun Y.-B., Kim T.K. Development of Advanced Structural Materials for Future Nuclear Systems in Korea // Procedia Eng. 2014. V. 86. P. 1–7.
- Рогожкин С.В., Хомич А.А., Богачев А.А., Никитин А.А., Лукьянчук А.А. Разницын О.А., Шутов А.С., Васильев А.Л., Пресняков М.Ю. Детальный анализ наноструктуры дисперсно-упрочненных оксидами сталей–перспективных материалов ядерных реакторов // Ядерная физика и инжиниринг. 2020. Т. 11. № 1. С. 22–31.
- Лукьянчук А.А., Разницын О.А., Шутов А.С., Алеев А.А., Клауз А.В., Бутов Н.А., Руцкой Б.В., Рогожкин С.В. Влияние типа и конфигурации установки атомно-зондовой томографии с лазерным испарением на точность восстановления данных // Ядерная физика и инжиниринг. 2022. Т. 13. № 4. C. 344–350.
- Разницын О.А., Лукьянчук А.А., Шутов А.С., Рогожкин С.В., Алеев А.А. Оптимизация параметров анализа материалов методами атомно-зондовой томографии с лазерным испарением атомов // Масс-спектрометрия. 2017. Т. 14. № 1. С. 33–39.
- Рогожкин С.В., Алеев А.А., Лукьянчук А.А., Шутов А.С. Программный комплекс по восстановлению, обработке и анализу томографических атомно-зондовых данных “КВАНТМ-3D” V1.0.0. Свидетельство о государственной регистрации программы для ЭВМ № 2018661876, рег. 20.09.2018.
- Oono N.H., Ukai S., Tominaga K., Ebisawa N., Tomura K. Precipitation of various oxides in ODS ferritic steels // J. Mater. Sci. 2019. V. 54. № 11. P. 8786–8799.
- Svoboda J., Horník V., Stratil L., Hadraba H., Mašek B., Khalaj O., Jirková H. Microstructure EVution in ODS Alloys with a High-Vume Fraction of Nano Oxides // Metals. 2018. V. 8. № 12. P. 1079.
- Лифшиц И.М., Слезов В.В. О кинетике диффузионного распада пересыщенных твердых растворов // ЖЭТФ. 1958. Т. 35. С. 479–492.
Supplementary files
