Remagnetization processes of uniaxial ferromagnetic films with spatially modified parameters

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study examines the behavior of vortex-like magnetic inhomogeneities that arise in a ferromagnetic disk with spatially modulated uniaxial anisotropy under magnetic fields of varying orientations. The research identifies the characteristic remagnetization stages of the vortex-like inhomogeneities formed in the region of the defect. critical fields of their rearrangement are found and an explanation is given for the difference in the behavior of these inhomogeneities in perpendicular and planar magnetic fields. The effect of the helicity of the magnetic skyrmion localized on the defect on its remagnetization process in the planar field is revealed.

Full Text

Restricted Access

About the authors

R. M. Vakhitov

FSFEI HE Ufa University of Science and Technology

Author for correspondence.
Email: vakhitovrm@yahoo.com

The Institute of Physics and Technology

Russian Federation, 450076, Ufa

A. A. Akhmetova

FSFEI HE Ufa University of Science and Technology

Email: vakhitovrm@yahoo.com

The Institute of Physics and Technology

Russian Federation, 450076, Ufa

M. А. Filippov

FSFEI HE Ufa University of Science and Technology

Email: vakhitovrm@yahoo.com

The Institute of Physics and Technology

Russian Federation, 450076, Ufa

R. V. Solonetsky

FSFEI HE Ufa University of Science and Technology

Email: vakhitovrm@yahoo.com

The Institute of Physics and Technology

Russian Federation, 450076, Ufa

References

  1. Sapozhnikov M.V., Vdovichev S.N., Ermolaeva O.L., Gusev N.S., Fraerman A.A., Gusev S.A., Petrov Yu.V. Artificial dense lattice of magnetic bubbles // Appl. Phys. Lett. 2016. V. 109. 042406. P. 1–5.
  2. Navas D., Verba R.V., Hierro-Rodriguez A., Bungaev S.A., Zhou X., Adeyeye A.O., Dobrovolskiy O.V., Ivanov B.A., Guslienko K.Y., Kakazei G.N. Route to form skyrmions in soft magnetic films // APL Mater. 2019. V. 7. 081114. P. 1–8.
  3. Вахитов Р.М., Ахметова А.А., Солонецкий Р.В. Особенности перемагничивания магнитоодноосных пленок с колумнарными дефектами // ФММ. 2020. Т. 121. № 5. С. 416–422.
  4. Mühlbauer S., Binz B., Jonietz F., Pfleiderer C., Rosch A., Newbauer A., Georgii R., Boni P. Skyrmion lattice in a chiral magnet // Science. 2009. V. 323. 5916. P. 915–919.
  5. Luo S., You L. Skyrmion devices for memory and logic application // APL Mater. 2021. V. 9. 050901.
  6. Самардак А.С., Колесников А.Г., Давыденко А.В., Стеблина М.Е., Огнева А.В. Топологически нетривиальные спиновые текстуры в тонких магнитных пленках // ФММ. 2022. Т. 123. № 3. С. 260–283.
  7. Kumar D., Sbiaa R. Domain wall memory: physics, materials, and devices // Phes. Rep. 2022. V. 958. P. 1–35.
  8. Lee O., Msiska O.R., Brems M.A., Klaui M., Kurebayashi H. Perspective on unconventional computing using magnetic skyrmions // Appl. Phys. Lett. 2023. V. 122. 260501.
  9. Fert A., Reyren N., Cros V. Magnetic skyrmions: advances in physics and potential applications // Nat. Rev. Mater. 2017. V. 2. 17031.
  10. Moreau-Luchaire, C., Moutafis, C., Reyren, N. Sampaio J., Vaz C.A. F., Horne N. Van, Bouzehouane K., Garcia K., Deranlot C., Warnicke P., Wohlhuter P., George J.M., Weigand M., Raabe J., Cros V., Fert A. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature // Nat. Nanotechnol. 2016. V. 11. P. 444–448.
  11. Ho P., Tan A.K.C., Goolaup S., Oyarce A.L.G., Raju M., Huang L.S., Soumyanarayanan A., Panagopoulos C. Geometrically Tailored Skyrmions at Zero Magnetic Field in Multilayered Nanostructures // Phys. Rev. Appl. 2019. V. 11. 024064.
  12. Sun L., Cao R.X., Miao B.F., Feng Z., You B., Wu D., Zhang W., An Hu, Ding H.F. Creating an Artificial Two-Dimensional Skyrmion Crystal by Nanopatterning. // Phys. Rev. Lett. 2013. V. 110. 167201. P. 1–5.
  13. Sapozhnikov M.V. Skyrmion lattice in a magnetic film with spatially modulated material parameters // J. Magn. Magn. Mater. 2015. V. 396. P. 338–344.
  14. Vakhitov R.M., Solonetsky R.V., Akhmetova A.A. Stable states of vortex-like magnetic formations in inhomogeneous magnetically uniaxial films and their behavior in a longitudinal magnetic field // J. Appl.Phys. 2020. V. 128. 153904. P. 1–10.
  15. Вахитов Р.М., Юмагузин А.Р. Структура и свойства магнитных неоднородностей, зарождающихся в области неоднородных магнитных полей // ЖТФ. 2001. Т. 46. № 5. С. 553–558.
  16. Миронов В.Л., Горев Р.В., Ермолаева О.Л., Гусев Н.С., Петров Ю.В. Воздействие поля зонда магнитно-силового микроскопана скирмионное состояние в модифицированной пленке Co/Pt с перпендикулярной анизотропией // ФТТ. 2019. Т. 61. № 9. С. 1644–1648.
  17. Darby M.I. Concerning the theory of bubble domains with Neel walls // Int. J. Magn. 1973. V. 4. P. 199–204.
  18. Вахитов Р.М., Шапаева Т.Б., Солонецкий Р.В., Юмагузин А.Р. Особенности структуры микромагнитных образований на дефектах плёнок ферритов–гранатов // ФММ. 2017. Т. 118. № 6. С. 571–575.
  19. Donahue M.J. and Porter D.G. OOMMF User’s Guide: Version 1.0. NISTIR6376. National Institute of Standards and Technology, Gaithersburg, Md. 1999.
  20. Khodenkov H.E., Kudelkin N.N., Randoshkin V.V. The Breakdown of the 360° Bloch Domain Wall in Bubble Magnetic Films // Phys. Stat. Sol (a). 1984. V. 84. К135–К138.
  21. Sapozhnikov M.V., Petrov Yu.V., Gusev N.S., Temiryazev A.G., Ermolaeva O.L., Mironov V.L., Udalov O.G. Artificial Dense Lattices of Magnetic Skyrmions // Materials. 2020. V. 13. № 99. P. 1–9.
  22. Beg M., Lang M., Fangohr H. Ubermag: Toward More Effective Micromagnetic Workflows // IEEE Transactions on Magnetics. 2022. V. 58. № 2. 1–5.
  23. Xia H., Song C., Wang J., Jin C., Ma Y., Zhang C., Wang J., Liu Q. Magnetic properties of isolated skyrmion under the in-plane magnetic field and anisotropy gradient // J. Appl. Phys. 2019. V. 126. 063904. P. 1–7.
  24. Guslienko K. Yu., Metlov K.L. Evolution and stability of a magnetic vortex in a small cylindrical ferromagnetic particle under applied field // Phys. Rev. B. 2001. V. 63. 100403(R).
  25. Wang W., Beg M., Zhang B., Kuch W., Fangohr H. Driving magnetic skyrmions with microwave fields // Phys. Rev. B. 2015. V. 92. 020403. P. 1–5.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Geometry of the problem. Here (er, ea, ez) are the unit vectors along the corresponding axes in the cylindrical coordinate system (r, α, z).

Download (61KB)
3. Fig. 2. Images illustrating the process of remagnetization of a uniaxial ferromagnetic disk with a defect in a perpendicular field. Sample parameters: R = 300 nm, D = 30 nm, R0 = 30 nm, A1 = A2 = 2.5 × 10-13 J/m, Ku1 = 3 × 104 J/m3, Ku2 = -0.5 × 104 J/m3, Ms = 6.6 × 105 A/m (visualization was performed in an environment Ubermag [22]).

Download (1MB)
4. Fig. 3. Graph of the dependence of the radius of the skyrmion RV on the radius of the defect R0.

Download (111KB)
5. Fig. 4. Images illustrating the process of remagnetization of a uniaxial ferromagnetic disk with a defect in a planar field. Sample parameters: R = 300 nm, D = 30 nm, R0 = 30 nm, A1 = A2 = 2.5 × 10-13 J/m, Ku1 = 3 × 104 J/m3, Ku2 = -0.5 × 104 J/m3, Ms = 6.6 × 105 A/m (visualization was performed in an environment Ubermag [22]).

Download (513KB)


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».