Decomposition features and mechanical properties of aging Ti49Ni51 alloy with shape memory effects subjected to heat treatment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The features of the microstructure of the Ti–51 at.%Ni shape memory alloy have been studied after aging at various temperatures. In combination with studies using optical and electron microscopy and X-ray analysis, mechanical properties were tested for tensile strength at room temperature. It has been established that the aged alloy is distinguished by a high level of mechanical properties (tensile strength up to 1200 MPa with a relative elongation of up to 35 %) due to highly dispersed homogeneous decomposition and the effect of simultaneous hardening and increased plasticity as a result of deformation-induced martensitic transformation.

Full Text

Restricted Access

About the authors

N. N. Kuranova

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Federal University

Email: pushin@imp.uran.ru
Russian Federation, Ekaterinburg, 620108; Ekaterinburg, 620002

V. V. Makarov

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: pushin@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

V. G. Pushin

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Federal University

Author for correspondence.
Email: pushin@imp.uran.ru
Russian Federation, Ekaterinburg, 620108; Ekaterinburg, 620002

References

  1. Ооцука К., Симидзу К., Судзуки Ю., Сэкигути Ю., Тадаки Ц., Хомма Т., Миядзаки С. Сплавы с эффектом памяти формы. М.: Металлургия, 1990. 224 c.
  2. Duering T.W., Melton K.L., Stockel D., Wayman C.M. (Eds.) Engineering Aspects of Shape Memory Alloys. Butterworth-Heineman: London, UK. 1990. 512 p.
  3. Хачин В.Н., Пушин В.Г., Кондратьев В.В. Никелид титана. Структура и свойства. М.: Наука, 1992. 159 c.
  4. Pushin V.G. Alloys with a Thermomechanical Memory: Structure, Properties, and Application // Phys. Met. Metall. 2000. V. 90. Suppl. 1. P. S68–S95.
  5. Brailovski V., Khmelevskaya I.Yu., Prokoshkin S.D., Pushin V.G., Ryklina E.P., Valiev R.Z. Foundation of heat and thermomechanical treatments and their on the structure and properties of titanium nickelide-based alloys // Phys. Met. Metal. 2004. V. 97. Suppl. 1. P. S3–S55.
  6. Razov A.I. Application of titanium nickelide-based alloys in engineering // Phys. Met. Metal. 2004. V. 97. Suppl. 1. P. S97–S126.
  7. Bonnot E., Romero R., Mañosa L., Vives E., Planes A. Elastocaloric effect associated with the martensitic transition in shape-memory alloys // Phys. Rev. Lett. 2008. V. 100. P. 125901.
  8. Cui J. Shape memory alloys and their applications in power generation and refrigeration / In Mesoscopic phenomena in multifunctional materials. Eds. A. Saxena, A. Planes. Germany: Springer, 2014. P. 289–307.
  9. Prokoshkin S.D., Pushin V.G., Ryklina E.P., Khmelevskaya I.Yu. Application of Titanium Nickelide–based Alloys in Medicine // Phys. Met. Metal. 2004. V. 97. P. S56–S96.
  10. Wilson J., Weselowsky M. Shape Memory Alloys for Seismic Response Modification: A State-of-the-Art Review // Earth. Spectra. 2005. V. 21. P. 569–601.
  11. Yoneyama T., Miyazaki S. Shape Memory Alloys for Biomedical Applications. Wordhead Publishing: Cambridge, UK. 2009. 320 p.
  12. Dong J., Cai C., O’Keil A. Overview of Potential and Existing Applications of Shape Memory Alloys in Bridges // J. Bridg. Eng. 2011. V. 16. P. 305–315.
  13. Pushin V., Kuranova N., Marchenkova E., Pushin A. Design and Development of Ti–Ni, Ni–Mn–Ga and Cu–Al–Ni-based Alloys with High and Low Temperature Shape Memory Effects // Materials. 2019. № 12. P. 2616 (24 pages).
  14. Kuranova N.N., Makarov V.V., Pushin V.G., Ustyugov Y.M. Influence of Heat Treatment and Deformation on the Structure, Phase Transformation, and Mechanical Behavior of Bulk TiNi-Based Alloys // Metals. 2022. V. 12. P. 2188.
  15. Пушин В.Г., Прокошкин С.Д., Валиев Р.З., Браиловский В., Валиев Э.З., Волков А.Е., Глезер А.М., Добаткин С.В., Дударев В.Ф., Жу Ю.Т., Зайнулин Ю.Г., Колобов Ю.Р., Кондратьев В.В., Королев А.В., Коршунов А.И., Коуров Н.И., Кудреватых Н.В., Лотков А.И., Мейснер Л.Л., Попов А.А., Попов Н.Н., Разов А.И., Хусаинов М.А., Чумляков Ю.И., Андреев С.В., Батурин А.А., Беляев С.П., Гришков В.Н., Гундеров Д.В., Дюпин А.П., Иванов К.В., Итин В.И., Касымов М.К., Кашин О.А., Киреева И.В., Козлов А.И., Кунцевич Т.Э., Куранова Н.Н., Пушина Н.Ю., Рыклина Е.П., Уксусников А.Н., Хмелевская И.Ю., Шеляков А.В., Шкловер В.Я., Шорохов Е.В., Юрченко Л.И. Сплавы никелида титана с памятью формы. Ч.I. Структура, фазовые превращения и свойства. Екатеринбург: УрО РАН, 2006. 440 с.
  16. Куранова Н.Н., Макаров В.В., Пушин В.Г. Влияние механо-термической обработки на структуру и механические свойства сплава Ti49.5Ni50.5 с эффектами памяти формы // ФММ. 2022. Т. 123. № 10. С. 1063–1071.
  17. Куранова Н.Н., Макаров В.В., Пушин В.Г., Попов Н.А. Структура и механические свойства стареющего сплава Ti49Ni51 с эффектами памяти формы после механо-термической обработки // ФММ. 2023. Т. 124. № 2. С. 239–247.
  18. Пушин В.Г., Волкова С.Б., Матвеева Н.М., Юрченко Л.И., Чистяков А.С. Структурные и фазовые превращения в квазибинарных сплавах системы TiNi-TiCu, быстрозакаленных из расплава. IV. Микроструктура кристаллических сплавов // ФММ. 1997. Т. 83. № 6. С. 149–156.
  19. Miyazaki S., Ishida A. Martensitic transformation and shape memory behavior in sputter-deposited TiNi-base thin films // Mater. Sci. and Eng. 1999. V. A273–275. P. 106–133.
  20. Fu Y., Du H., Huang W., Zhang S., Hu M. TiNi-based thin films in MEMS applications: A review // Sens.Actuators A. 2004. V. 112. P. 398–408.
  21. Пушин А.В., Попов А.А., Пушин В.Г. Влияние отклонения химического состава от стехиометричского на структурные и фазовые превращения и свойства быстрозакаленных сплавов Ti50+xNi25-xCu25 // ФММ. 2012. Т. 113. № 3. С. 299–311.
  22. Pushin V.G., Stolyarov V.V., Valiev R.Z., Kourov N.I., Kuranova N.N., Prokofiev E.A., Yurchenko L.I. Features of Structure and Phase Transformations in Shape Memory TiNi-Based Alloys after Severe Plastic Deformation // Ann. Chim. Sci. Mat. 2002. V. 27. P. 77–88.
  23. Pushin V.G., Valiev R.Z., Zhu Y.T., Gunderov D.V., Kourov N.I., Kuntsevich T.E., Uksusnikov A.N., Yurchenko L.I. Effect of Severe Plastic Deformation on the Behavior of Ti–Ni Shape Memory Alloys // Mater. Trans. 2006. V. 47. P. 694–697.
  24. Valiev R., Gunderov D., Prokofiev E., Pushin V., Zhu Yu. Nanostructuring of TiNi alloy by SPD processing for advanced properties // Mater. Trans. 2008. V. 49. P. 97–101.
  25. Куранова Н.Н., Гундеров Д.В., Уксусников А.Н., Лукьянов А.В., Юрченко Л.И., Прокофьев Е.А., Пушин В.Г., Валиев Р.З. Влияние термообработки на структурные и фазовые превращения и механические свойства сплава TiNi, подвергнутого интенсивной пластической деформации кручением // ФММ. 2009. Т. 108. № 6. С. 589–601.
  26. Ren X., Miura N., Zhang J., Otsuka K., Tanake K., Koiwa M., Suzuki N., Chumlykov Y.I. A Comparative Study of Elastic Constants of Ti-Ni-based Alloys Prior to Martensitic Transformation // Mater. Sci. Eng. 2001. V. A312. P. 196–206.
  27. Лободюк В.А., Коваль Ю.Н., Пушин В.Г. Кристаллоструктурные особенности предпереходных явлений и термоупругих мартенситных превращений в сплавах цветных металлов // ФММ. 2011. Т. 111. № 2. С. 169–194.
  28. Sarkar S., Ren X., Otsuka K. Evidence for strain glass in the ferroelastic-martensitic system Ti50-xNi50+x // Phys. Rev. Lett. 2005. V. 95. P. 205702.
  29. Jin Y.M., Wang Yu.U., Ren. Y. Theory and experimental evidence of phonon domains and their roles in pre-martensitic phenomena // Computational Mater. 2015. V. 1. P. 15002.
  30. Wang Y., Jin Y.M. Martensitic transformation precursors: phonon theory and critical experiments / Proc. Int. Conf. Solid-solid phase transformations in inorganic materials. 2015. P. 467–474.
  31. Ko W.S., Maisel S.B., Grabowski B., Jeon J.B., Neugebauer J. Atomic scale processes of phase transformations in nanocrystalline NiTi shape-memory alloys // Acta Mater. 2017. V. 123. P. 90–101.
  32. Deng Z., Li Q., Onuki Y., Sun Q. Multifunctional nanostructured NiTi alloy with invar, elinvar and rinvar properties // J. Alloys Comp. 2022. V. 909. P. 164682.
  33. Xu K., Luo J., Li C., Shen Y., Li C., Ma X., Li M. Mechanisms of stress-induced martensitic transformation and transformation-induced plasticity in NiTi shape memory alloy related to superelastic stability // Scripta Mater. 2022. V. 217. P. 114775.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Light-field (a, b) TEM images of the microstructure and corresponding microelectronograms (O. Z. [100]B2 (c), O. Z. [111]B2 (d)) of Ti49Ni51 alloy in the initial quenched state.

Download (29KB)
3. Fig. 2. Light-field (a, c) TEM images of the microstructure of Ti49Ni51 alloy after quenching from 1073 K into water and PIO 473 K for one hour, the corresponding microelectronogram (b, O. Z. [100]B2) and a scheme for decoding satellite effects of diffuse scattering in this section (d).

Download (29KB)
4. Fig. 3. Light (a, c) and dark–field (d) - in the 110B2 matrix reflex on microelectronogram 3b, TEM images of the microstructure and the corresponding microelectronogram (b, O. Z. [001]B2) of Ti49Ni51 alloy after PIO at 573 K for 1 hour.

Download (46KB)
5. Fig. 4. Light (a) and dark (b) – in three reflexes indicated by a ring on the microelectronogram 4b, TEM images of the microstructure and the corresponding microelectronogram (c, O. Z. [115]B2) of Ti49Ni51 alloy after PIO at 623 K for 1 hour.

Download (38KB)
6. Fig. 5. Light (a) and dark-field (b, c) in the reflexes indicated by numbers 1 and 2 on the 5g microelectronogram, TEM images of the microstructure and the corresponding microelectronogram (g, O. Z. [110]B2) of Ti49Ni51 alloy after PIO at 673 K for 1 hour.

Download (35KB)
7. Fig. 6. Light–field (a-b) TEM images of the microstructure and the corresponding microelectronogram (g, O. Z. [120]B2) of Ti49Ni51 alloy after PIO at 773 K for 1 hour.

Download (37KB)
8. Fig. 7. Light–field (a-c) TEM images of the microstructure and the corresponding microelectronogram (g, O. Z. [331]B2) of Ti49Ni51 alloy after PIO at 773 K for 2 (a, b). 5 h (c).

Download (43KB)
9. Fig. 8. Dependences of the tensile strengths σB, dislocation σ0.2 and phase σM of yield strength and elongation δ on the aging temperature of the hardened alloy Ti49Ni51.

Download (11KB)
10. Fig. 9. Fractography alloys4951 then tempering from 1173 K (A) and Pio at 673 K, 1 h (b).

Download (22KB)


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».