Study of minor Sc and Zr additions effect on silicon rich Al–Mg–Si aluminum alloy microstructure during Sc multistage thermal treatment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study addresses the effect of multistage thermal treatment on microstructure formation of Al–Mg–Si series alloy with scandium and zirconium additions in Mg/Si = 0.3 proportion. Basic alloy AlM–Si without Sc and Zr and them modification AlMg1SiZrSc were cast. AlMgSiScZr alloy multi-stage thermal treatment included the following 4 annealing stages –550 °C 8 h + 440 °C 8 h + 500 °C 0.5 h + 180 °C 5 h. For AlMg1Si alloy it was performed following 550 °C 8 h + 180 °C 5 h practice. AlMgSiScZr microstructure was examined using scanning (SEM) and transmission (TEM) microscopy both in as-cast state and after each stage of thermal treatment, for AlMg1Si – both in as-cast state and after final thermal treatment. Coarse intermetallic particles were examined using SEM, while fine particles were examined using TEM. Besides, microhardness values were measured after various thermal treatment stages. It was found out, that coarse intermetallic compounds of Fe2Mg7Si10Al18 type are formed in both alloys during as-cast structure cooling down with such compounds partial dissolution during further thermal treatment. At the same time particles, that can be attributed either to (AlSi)3ScZr or to AlSc2Si2τ-phase, occur in inter-grain boundary of alloys with scandium-zirconium additions. No traces of scandium solid solution discontinuous decomposition have been identified during ingot cooling down. Thermal treatment during 8 h at 550 °C 8 and 8 h at 440 °C results in formation of the phase, which can represent both AlSc2Si2 and Al5SiZr2. At the same time nanoparticles (AlSi)3ScZr do not form during this thermal treatment stage. Heating to 500 °C during 30 min interval allows complete dissolution of magnesium in supersaturated aluminum solid solution. During the final stage β’’ particles (Mg5Si6), representing the major type, form in both alloys; in these conditions scandium does not produce significant effect on their formation.

About the authors

E. V. Aryshenskii

Siberian State Industrial University (SibSIU); Samara State University

Author for correspondence.
Email: arishenskiy_ev@sibsiu.ru
Russian Federation, Novokuznetsk, 654007; Samara, 443086

М. А. Lapshov

Samara State University

Email: arishenskiy_ev@sibsiu.ru
Russian Federation, Samara, 443086

D. Y. Rasposienko

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: arishenskiy_ev@sibsiu.ru
Russian Federation, Ekaterinburg, 620108

S. V. Konovalov

Siberian State Industrial University (SibSIU); Samara State University

Email: arishenskiy_ev@sibsiu.ru
Russian Federation, Novokuznetsk, 654007; Samara, 443086

A. M. Drits

Samara State University

Email: arishenskiy_ev@sibsiu.ru
Russian Federation, Samara, 443086

V. V. Makarov

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: arishenskiy_ev@sibsiu.ru
Russian Federation, Ekaterinburg, 620108

References

  1. Алаттар А.Л., Никитина Л.Н., Бажин В.Ю. Повышение физико-механических свойств алюминиевых сплавов, армированных частицами карбида бора // Электрометаллургия. 2022. № 7. С. 13–22.
  2. Kosov Y.I., Bazhin V.Y. Synthesis of an aluminum–erbium master alloy from chloride–fluoride melts // Russian Metal. (Metally). 2018. V. 2018. № 2. P. 139–148.
  3. Bazhin V.Y., Kosov Y.I., Lobacheva O.L., Dzhevaga N.V. Synthesis of aluminum-based scandium–yttrium master alloys // Russian Metal. (Metally). 2015. V. 2015. № 7. P. 516–520.
  4. Edwards G.A., Stiller K., Dunlop G.L., Couper M.J. The precipitation sequence in Al–Mg–Si alloys // Acta Mater. 1998. V. 46. № 11. P. 3893–3904.
  5. Murayama M., Hono K. Pre-precipitate clusters and precipitation processes in Al–Mg–Si alloys // Acta Mater. 1999. V. 47. № 5. P. 1537–1548.
  6. Колачев Б.А., Елагин В.И., Ливанов В.А. Металловедение и термическая обработка цветных металлов и сплавов. МИСиС, 2005.
  7. Meyruey G., Massardier V., Lefebvre W., Perez M. Over-ageing of an Al–Mg–Si alloy with silicon excess // Mater. Sci. Eng.: A. 2018. V. 730. P. 92–105.
  8. Zakharov V.V. Combined alloying of aluminum alloys with scandium and zirconium // Metal. Sci. Heat Treatment. 2014. V. 56. № 5–6. P. 281–286.
  9. Röyset J., Ryum N. Scandium in aluminium alloys // Intern. Mater. Rev. 2005. V. 50. № 1. P. 19–44.
  10. Elagin V.I., Zakharov V.V., Rostova T.D. Prospects in alloying of aluminium alloys with scandium // Tsvetnye Metally. 1982. P. 96–99.
  11. Davydov V.G., Elagin V.I., Zakharov V.V., Rostova T.D. Alloying aluminum alloys with scandium and zirconium additives // Metal. Sci. Heat Treatment. 1996. V. 38. № 8. P. 347–352.
  12. Рохлин Л.Л., Бочвар Н.Р., Табачкова Н.Ю., Суханов А.В. Влияние скандия на кинетику и упрочнение при старении сплавов системы AL–MG 2SI // Технология легких сплавов. 2015. № 2. C. 53–62.
  13. Davydov V.G., Rostova T.D., Zakharov V.V., Filatov Y.A., Yelagin V.I. Scientific principles of making an alloying addition of scandium to aluminium alloys // Mater. Sci. Eng.: A. 2000. V. 280. № 1. P. 30–36.
  14. Vlach M., Smola B., Stulíková I., Očenášek V. Microstructure and mechanical properties of the AA6082 aluminium alloy with small additions of Sc and Zr // Intern. J. Mater. Research. 2009. V. 100. № 3. P. 420–423.
  15. Ikeda K., Akiyoshi R., Takashita T., Mitsuhara M., Hata S., Nakashima H., Kaneko K. Precipitation Morphology in Al–Mg–Si–Sc–Zr Hot-Rolled Sheet / ICAA13 Pittsburgh: Proceedings of the 13th International Conference on Aluminum Alloys. – Springer International Publishing, 2016. P. 1181–1185.
  16. Jiang S., Wang R. Grain size-dependent Mg/Si ratio effect on the microstructure and mechanical/electrical properties of Al–Mg–Si–Sc alloys // J. Mater. Sci. Techn. 2019. V. 35. № . 7. P. 1354–1363.
  17. Cabibbo M., Evangelista E. A TEM study of the combined effect of severe plastic deformation and (Zr),(Sc+ Zr)-containing dispersoids on an Al–Mg–Si alloy // J. Mater. Sci. 2006. V. 41. P. 5329–5338.
  18. Aryshenskii E., Lapshov M., Hirsch J., Konovalov S., Bazhenov V., Drits A., Zaitsev D. Influence of the small sc and zr additions on the as-cast microstructure of al–mg–si alloys with excess silicon // Metals. 2021. V. 11. № 11. P. 1797.
  19. Babaniaris S., Ramajayam M., Jiang L., Langan T., Dorin T. Tailored precipitation route for the effective utilisation of Sc and Zr in an Al–Mg–Si alloy // Materialia. 2020. V. 10. P. 100656.
  20. Aryshenskii E., Lapshov M., Konovalov S., Hirsch J., Aryshenskii V., Sbitneva S. The Casting Rate Impact on the Microstructure in Al–Mg–Si Alloy with Silicon Excess and Small Zr, Sc Additives // Metals. 2021. V. 11. № 12. P. 2056.
  21. Murray J., Peruzzi A., Abriata J.P. The Al-Zr (aluminum-zirconium) system // J. Phase Equilibria. 1992. V. 13. № 3. P. 277–291.
  22. Wang F., Qiu D., Liu Z.L., Taylor J.A., Easton M.A., Zhang M.X. The grain refinement mechanism of cast aluminium by zirconium // Acta Mater. 2013. V. 61. № 15. P. 5636–5645.
  23. Du Y., Chang Y.A., Liu S., Huang B., Xie F.Y., Yang Y., Chen S.L. Thermodynamic description of the Al–Fe–Mg–Mn–Si system and investigation of microstructure and microsegregation during directional solidification of an Al–Fe–Mg–Mn–Si alloy // Intern. J. Mater. Research. 2022. V. 96. № 12. P. 1351–1362.
  24. Kumar S., Babu N.H., Scamans G.M., Eskin D.G., Fan Z. Solidification behaviour of an AA5754 Al alloy ingot cast with high impurity content // Intern. J. Mater. Research. 2012. V. 103. № 10. P. 1228–1234.
  25. Engler O., Miller-Jupp S. Control of second-phase particles in the Al–Mg–Mn alloy AA 5083 // J. Alloys and Compounds. 2016. V. 689. P. 998–1010.
  26. Norman A.F., Prangnell P.B., McEwen R.S. The solidification behaviour of dilute aluminium–scandium alloys // Acta Mater. 1998. V. 46. № 16. P. 5715–5732.
  27. Lech-Grega M., Boczkal S. Iron Phases in Model Al–Mg–Si–Cu Alloys // Materials Science Forum. – Trans Tech Publications Ltd. 2011. V. 674. P. 135–140.
  28. Hirano T., Ohtani H., Hasebe M. Thermodynamic analysis of the Al-Si-Zr ternary system // High Temperature Mater. and Processes. 2010. V. 29. № 5–6. P. 347–372.
  29. Yang W., Ji S., Huang L., Sheng X., Li Z., Wang M. Initial Precipitation and Hardening Mechanism during Non-isothermal Ageing in an Al–Mg–Si–Cu 6005A Alloy // Mater. Characterization. 2014. V. 94. P. 170–177.
  30. Vissers R., van Huis M.A., Jansen J., Zandbergen H.W., Marioara C.D., Andersen S.J. The crystal structure of the β′ phase in Al–Mg–Si alloys // Acta Mater. 2007. V. 55. № 11. P. 3815–3823.
  31. Yang W., Huang L., Zhang R., Wang M., Li Z., Jia Y., Lei R., Sheng X. Electron microscopy studies of the age-hardening behaviors in 6005A alloy and microstructural characterizations of precipitates // J. Alloys Compounds. 2012. V. 514. P. 220–233.
  32. Cordero Z.C., Knight B.E., Schuh C.A. Six decades of the Hall–Petch effect–a survey of grain-size strengthening studies on pure metals // Intern. Mater. Rev. 2016. V. 61. № 8. P. 495–512.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies