Transverse magneto-optical Kerr effect enhancement in si–ni nanogratings by mie and surface lattice resonances

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We demonstrate experimentally that a one-dimensional array of silicon nanowires periodically placed on a nickel substrate enhances the transverse magneto-optical Kerr effect (TMOKE) compared to a nickel film. The enhancement mechanism is associated with the excitation of two types of resonances: multipole Mie resonances in each nanowire and surface lattice resonances (SLRs) emerging from the periodic arrangement of the nanowires. The maximal TMOKE values reached up to 1.9 % and 2.6 % due to the excitation of SLR and a magnetic dipole resonance, respectively. When the SLR is excited, the spectral width of the TMOKE enhancement is narrower compared to the case of the magnetic dipole resonance.

About the authors

K. A. Mamian

Lomonosov Moscow State University, Faculty of Physics

Author for correspondence.
Email: mamyan@nanolab.phys.msu.ru

Faculty of Physics

Russian Federation, Moscow, 119991

A. Yu. Frolov

Lomonosov Moscow State University, Faculty of Physics

Email: mamyan@nanolab.phys.msu.ru

Faculty of Physics

Russian Federation, Moscow, 119991

V. V. Popov

Lomonosov Moscow State University, Faculty of Physics

Email: mamyan@nanolab.phys.msu.ru

Faculty of Physics

Russian Federation, Moscow, 119991

A. A. Fedyanin

Lomonosov Moscow State University, Faculty of Physics

Email: mamyan@nanolab.phys.msu.ru

Faculty of Physics

Russian Federation, Moscow, 119991

References

  1. Звездин А.К., Котов В.А. Магнитооптика тонких пленок. М.: Наука, 1988. 192 c.
  2. Кринчик Г.С., Артемьев В.А. Магнитооптические свойства Ni, Fe и Со в ультрафиолетовой, видимой и инфракрасной областях спектра // ЖЭТФ. 1967. Т. 53. № 6. С. 1901–1912.
  3. Maier S.A. Plasmonics: fundamentals and applications. Springer Science & Business Media. 2007. 224 p.
  4. Armelles G., Bautista González-Díaz J., García-Martín A., Miguel García-Martín J., Cebollada A., Ujué González M., Acimovic S., Cesario J., Quidant R., Badenes G., Bohren C.F., Huffman D.R., Kim S., Jin J., Kim Y., Park I., Kim Y., Kim S. Localized surface plasmon resonance effects on the magneto-optical activity of continuous Au/Co/Au trilayers // Opt. Express. 2008. V. 16. P. 16104–16112.
  5. Wang L., Yang K., Clavero C., Nelson A.J., Carroll K.J., Carpenter E.E., Lukaszew R.A. Localized surface plasmon resonance enhanced magneto-optical activity in core-shell Fe–Ag nanoparticles // J. Appl. Phys. 2010. V. 107. P. 09B303.
  6. Barnes W.L., Dereux A., Ebbesen T.W. Surface plasmon subwavelength optics // Nature. 2003. V. 424. P. 824–830.
  7. Safarov V.I., Kosobukin V.A., Hermann C., Lampel G., Peretti J., Marlière C. Magneto-optical effects enhanced by surface plasmons in metallic multilayer films // Phys. Rev. Lett. 1994. V. 73. P. 3584–3587.
  8. Yang K., Lukaszew R.A., Clavero C., Skuza J.R. Magnetic field modulation of intense surface plasmon polaritons // Opt. Express. 2010. V. 18. P. 7743–7752.
  9. Takashima Y., Haraguchi M., Naoi Y. Numerical finite-difference time-domain calculation for extreme enhancement of magneto-optical effect at ultraviolet wavelength using Ni-subwavelength grating on SiO2/Ni structure // Opt. Rev. 2022. V. 29. P. 62–67.
  10. Кирьянов М.А., Останин Г.С., Долгова Т.В., Иноуе М., Федянин А.А. Аномальная пикосекундная динамика оптического пропускания гибридной метаповерхности Au-Bi: YIG // Письма в ЖЭТФ. 2023. Т. 117. № 3. С. 201–206.
  11. Novikov V.B., Romashkina A.M., Ezenkova D.A., Rodionov I.A., Afanasyev K.N., Baryshev A.V., Murzina T.V. Surface plasmon driven enhancement of linear and nonlinear magneto-optical Kerr effects in bimetallic magnetoplasmonic crystals in conical diffraction // Phys. Rev. B. 2022. V. 105. P. 155408.
  12. Pomozov A.R., Chekhov A.L., Rodionov I.A., Baburin A.S., Lotkov E.S., Temiryazeva M.P., Afanasyev K.N., Baryshev A.V., Murzina T.V. Two-dimensional high-quality Ag/Py magnetoplasmonic crystals // Appl. Phys. Lett. 2020. V. 116. P. 013106.
  13. Novikov I.A., Kiryanov M.A., Nurgalieva P.K., Frolov A.Y., Popov V.V., Dolgova T.V., Fedyanin A.A. Ultrafast magneto-optics in nickel magnetoplasmonic crystals // Nano Lett. 2020. V. 20. P. 8615–8619.
  14. Kiryanov M.A., Frolov A.Y., Novikov I.A., Kipp P.A., Nurgalieva P.K., Popov V.V., Ezhov A.A., Dolgova T.V., Fedyanin A.A. Surface profile-tailored magneto-optics in magnetoplasmonic crystals // APL Photonics. 2022. V. 7. P. 26104.
  15. Frolov A.Y., Shcherbakov M.R., Fedyanin A.A. Dark mode enhancing magneto-optical Kerr effect in multilayer magnetoplasmonic crystals // Phys. Rev. B. 2020. V. 101. P. 045409.
  16. Dyakov S.A., Fradkin I.M., Gippius N.A., Klompmaker L., Spitzer F., Yalcin E., Akimov I.A., Bayer M., Yavsin D.A., Pavlov S.I., Pevtsov A.B., Verbin S.Y., Tikhodeev S.G. Wide-band enhancement of the transverse magneto-optical Kerr effect in magnetite-based plasmonic crystals // Phys. Rev. B. 2019. V. 100. P. 214411.
  17. Wang Q., Yao H., Feng Y., Deng X., Yang B., Xiong D., He M., He M., Zhang W., Zhang W. Surface plasmon resonances boost the transverse magneto-optical Kerr effect in a CoFeB slab covered by a subwavelength gold grating for highly sensitive detectors // Opt. Express. 2021. V. 29. P. 10546–10555.
  18. Cheng T.-H., Yang W., Liu Z., Feng H., Qin J., Ma Y., Li S., Bi L., Luo F. Enhanced Faraday rotation by a Fano resonance in substrate-free three-dimensional magnetoplasmonic structures // Nanoscale. 2023. V. 15. P. 15583–15589.
  19. Панина Л.В., Беляев В.К., Аникин А., Шумская А., Козлов А.Г., Огнев А.В., Рогачев А., Корольков И., Здоровец М., Козловский А., Родионова В.В. Нанокомпозиты со структурой магнитное ядро-золотая оболочка для фототермии // ФММ. 2022. Т. 123. № 12. С. 1259–1266.
  20. Томилин С.В., Каравайников A.B., Ляшко С.Д., Милюкова Е.Т., Томилина O.A., Бержанский В.Н. Влияние наноструктурирования на возбуждение различных резонансных мод в магнитоплазмонном кристалле // ФММ. 2022. Т. 123. № 7. С. 710–715.
  21. Kolmychek I.A., Pomozov A.R., Leontiev A.P., Napolskii K.S., Murzina T.V. Magneto-optical effects in Au/Ni based composite hyperbolic metamaterials // Phys. Met. Metallogr. 2019. V. 120. P. 1266–1269.
  22. Naydenov P.N., Chekhov A.L., Ketsko V.A., Smirnova M.N., Murzina T.V., Stognij A.I. Magnetoplasmonic crystal waveguide // Opt. Express. 2018. V. 26. P. 21086–21091.
  23. Achanta V.G., Berzhansky V.N., Zvezdin A.K., Prokopov A.R., Dagesyan S.A., Shaposhnikov A.N., Kozhaev M.A., Kalish A.N., Komarov R.S., Belotelov V.I. Magnetoplasmonic quasicrystals: an approach for multiband magneto-optical response // Optica. 2018. V. 5. P. 617–623.
  24. Bsawmaii L., Gamet E., Neveu S., Jamon D., Royer F. Magnetic nanocomposite films with photo-patterned 1D grating on top enable giant magneto-optical intensity effects // Opt. Mater. Express. 2022. V. 12. P. 513–523.
  25. Bohren C.F., Huffman D.R. Absorption and scattering of light by small particles. John Wiley & Sons. 2004. 530 p.
  26. Черняк A.M., Барсукова М.Г., Шорохов A.С., Мусорин A.И., Федянин A.A. Связанное состояние континуума магнитофотонных метаповерхностей. Письма в ЖЭТФ. 2020. Т. 111. № 1. С. 40–44.
  27. Kuznetsov A.I., Miroshnichenko A.E., Brongersma M.L., Kivshar Y.S., Luk’yanchuk B. Optically resonant dielectric nanostructures // Science. 2016. V. 354. P. aag2472.
  28. Cao L., Fan P., Barnard E.S., Brown A.M., Brongersma M.L. Tuning the color of silicon nanostructures // Nano Lett. 2010. V. 10. P. 2649–2654.
  29. Barsukova M.G., Musorin A.I., Shorokhov A.S., Fedyanin A.A. Enhanced magneto-optical effects in hybrid Ni-Si metasurfaces // APL Photonics. 2019. V. 4. P. 016102.
  30. Musorin A.I., Barsukova M.G., Shorokhov A.S., Luk’yanchuk B.S., Fedyanin A.A. Manipulating the light intensity by magnetophotonic metasurfaces // J. Magn. Magn. Mater. 2018. V. 459. P. 165–170.
  31. Barsukova M.G., Shorokhov, A.S., Musorin, A.I., Neshev D.N., Kivshar Y.S., Fedyanin A.A. Magneto-optical response enhanced by Mie resonances in nanoantennas // ACS Photonics. 2017. V. 4. P. 2390–2395.
  32. Utyushev A.D., Zakomirnyi V.I., Rasskazov I.L. Collective lattice resonances: plasmonics and beyond // Rev. Phys. 2021. V. 6. P. 100051.
  33. Zakomirnyi V.I., Agren H., Rasskazov I.L., Karpov S.V., Gerasimov V.S., Ershov A.E. Collective lattice resonances in arrays of dielectric nanoparticles: a matter of size // Opt. Lett. 2019. V. 44. P. 5743–5746.
  34. Castellanos G.W., Bai P., Gómez Rivas J. Lattice resonances in dielectric metasurfaces // J. Appl. Phys. 2019. V. 125. P. 213105.
  35. Kataja M., Hakala T.K., Julku A., Huttunen M.J., Van Dijken S., Törmä P. Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays // Nat. Commun. 2015. V. 6. P. 1–8.
  36. Колмычек И.А., Шайманов А.Н., Барышев А.В., Мурзина Т.В. Исследование магнитооптического отклика двумерных магнитных плазмонных структур на основе золотых нанодисков в слое феррит-граната // Письма в ЖЭТФ. 2015. Т. 102. № 1. С. 50–55.
  37. Chetvertukhin A.V., Musorin A.I., Dolgova T.V., Uchida H., Inoue M., Fedyanin A.A. Transverse magneto-optical Kerr effect in 2D gold–garnet nanogratings // J. Magn. Magn. Mater. 2015. V. 383. P. 110–113. https://www.ansys.com/products/photonics/fdtd
  38. Pierce D.T., Spicer W.E. Electronic structure of amorphous Si from photoemission and optical studies // Phys. Rev. B. 1972. V. 5. P. 3017–3029.
  39. Palik E.D. Handbook of optical constants of solids. Academic Press. 1985. 804 p.
  40. Rizal C., Manera M.G., Ignatyeva D.O., Mejía-Salazar J.R., Rella R., Belotelov V.I., Pineider F., Maccaferri N. Magnetophotonics for sensing and magnetometry toward industrial applications // J. Appl. Phys. 2021. V. 130. P. 230901.
  41. Grunin A.A., Mukha I.R., Chetvertukhin A.V., Fedyanin A.A. Refractive index sensor based on magnetoplasmonic crystals // J. Magn. Magn. Mater. 2016. V. 415. P. 72–76.
  42. Belyaev V.K., Rodionova V.V., Grunin A.A., Inoue M., Fedyanin A.A. Magnetic field sensor based on magnetoplasmonic crystal // Sci. Rep. 2020. V. 10. P. 1–6.
  43. Murzin D., Mapps D.J., Levada K., Belyaev V., Omelyanchik A., Panina L., Rodionova V. Ultrasensitive magnetic field sensors for biomedical applications // Sensors. 2020. V. 20. P. 1569.
  44. Belyaev V.K., Murzin D.V., Perova N.N., Grunin A.A., Fedyanin A.A., Rodionova V.V. Permalloy-based magnetoplasmonic crystals for sensor applications // J. Magn. Magn. Mater. 2019. V. 482. P. 292–295.
  45. Murzin D.V., Frolov A. Yu., Mamian K.A., Belyaev V.K., Fedyanin A.A, Rodionova V.V. Low coercivity magnetoplasmonic crystal based on a thin permalloy film for magnetic field sensing applications // Opt. Mater. Express. 2023. V. 13. P. 171–178.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies