Thermal Contact Resistance of the Copper–Copper Pair with Graphene Thermal Interface in Magnetic Fields up to 10 T

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Abstract—

The thermal contact resistance of a detachable connection in copper-copper contact pair with a thermal interface from layers of graphene synthesized by the method of a low pressure chemical vapor deposi-tion on the contact surface was studied. Obtaining the value of the thermal contact resistance of a detachable contact pair copper–graphene–copper by the method of transient heat flow, at a temperature of 15–150 K under the influence of an external magnetic field up to 10 T.

作者简介

K. Kolesov

Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences

编辑信件的主要联系方式.
Email: kolesovkka@mail.ru
Russia, 125009, Moscow

A. Mashirov

Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences

Email: kolesovkka@mail.ru
Russia, 125009, Moscow

A. Irzhak

National University of Science and Technology “MISIS”

Email: kolesovkka@mail.ru
Russia, 119049, Moscow

M. Chichkov

National University of Science and Technology “MISIS”

Email: kolesovkka@mail.ru
Russia, 119049, Moscow

E. Safrutina

National University of Science and Technology “MISIS”

Email: kolesovkka@mail.ru
Russia, 119049, Moscow

D. Kiselev

National University of Science and Technology “MISIS”

Email: kolesovkka@mail.ru
Russia, 119049, Moscow

A. Kuznetsov

Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences

Email: kolesovkka@mail.ru
Russia, 125009, Moscow

O. Belova

Bauman Moscow State Technical University

Email: kolesovkka@mail.ru
Russia, 105005, Moscow,

V. Koledov

Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences

Email: kolesovkka@mail.ru
Russia, 125009, Moscow

V. Shavrov

Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences

Email: kolesovkka@mail.ru
Russia, 125009, Moscow

参考

  1. Liu W., Bykov E., Taskaev S., Bogush M., Khovaylo V., Fortunato N., Aubert A., Zhang H., Gottschall T., Wosnitza J., Scheibel F., Skokov K., Gutfleisch O. A study on rare-earth Laves phases for magnetocaloric liquefaction of hydrogen // Appl. Mater. Today. 2022. V. 29. P. 101 624.
  2. Liu W., Gottschall T., Scheibel F., Bykov E., Fortunato N., Aubert A., Zhang H., Skokov K., Gutfleisch, O. Designing magnetocaloric materials for hydrogen liquefaction with light rare-earth Laves phases // J. Phys.: Energy. 2023. V. 5. P. 034001.
  3. Koshkid’ko Yu.S., Dilmieva E.T., Kamantsev A.P., Mashirov A.V., Cwik J., Kol’chugina N.B., Koledov V.V., Shavrov V.G. Magnetocaloric Materials for Low-Temperature Magnetic Cooling // J. Comm. Techn. Electron. 2023. V. 68. P. 379–388.
  4. Park J., Jeong S., Park I. Development and parametric study of the convection-type stationary adiabatic demagnetization refrigerator (ADR) for hydrogen re-condensation // Cryogenics. 2015. V. 71. P. 82–89.
  5. Park I., Jeong S. Development of the active magnetic regenerative refrigerator operating between 77 K and 20 K with the conduction cooled high temperature superconducting magnet // Cryogenics. 2017. V. 88. P. 106–115.
  6. Kamiya K., Matsumoto K., Numazawa T., Masuyama S., Takeya H., Saito A.T., Kumazawa N., Futatsuka K., Matsunaga K., Shirai T., Takada S., Lida T. Active magnetic regenerative refrigeration using superconducting solenoid for hydrogen liquefaction // Appl. Phys. Express. 2022. V. 15. P. 053001.
  7. Swoboda T., Klinar K., Yalamarthy A.S., Kitanovski A., Rojo M.M. Solid-State Thermal Control Devices // Adv. Electron. Mater. 2021. V. 7. P. 2000625.
  8. Дмитриев А.С. Введение в нанотеплофизику М.: БИНОМ. Лаборатория знаний, 2015. 790 с.
  9. Чернозатонский Л.А., Сорокин П.Б., Артюх А.А. Новые наноструктуры на основе графена: физико-химичсекие свойства и приложения // Успехи химии. 2014. № 83. С. 251–279.
  10. Ying J., Dai W., Yu J., Jiang N., Lin C.-T., Yan Q. Rational design of graphene structures for preparing high performance thermal interface materials: A mini review // Science china: Physics, Mechanics and Astronomy. 2022. V. 65. P. 117 005.
  11. Hong Y., Li L., Zeng X.C., Zhang J. Tuning thermal contact conductance at graphene–copper interface via surface nanoengineering // Nanoscale. 2015. V. 7. P. 6286–6294.
  12. Goli P., Ning H., Li X., Lu C.Y., Novoselov K.S., Balandin A.A. Thermal Properties of Graphene–Copper–Graphene Heterogeneous Films // Nano Lett. 2014. V. 14. P. 1497–1503.
  13. Kolesov K.A., Mashirov A.V., Kuznetsov A.S., Koledov V.V., Petrov A.O., Shavrov V.G. Thermal Contact Resistance at Cryogenic Temperatures in the Presence of Strong Magnetic Fields // J. Communications Technology and Electronics. 2023. V. 68. P. 420–424.
  14. Попов В.М. Теплообмен в зоне контакта разъемных и неразъемных соединений. М.: Энергия, 1971.
  15. Kumar V., Kumar A., Lee D.-J., Park S.-S. Estimation of Number of Graphene Layers Using Different Methods: A Focused Review // Materials. 2021. V. 14. P. 4590.
  16. No Y.-S., Choi K.H., Kim J.-S., Kim H., Yu Y.-J., Choi C.-G., Choi J.S. Layer number identification of CVD-grown multilayer graphene using Si peak analysis // Sci. Reports. 2018. V. 8. P. 571.
  17. Hwangbo Y., Lee C.-K., Mag-Isa A.E., Jang J.-W., Lee H.-J., Lee S.-B., Kim S.-S., Kim J.-H. Interlayer non-coupled optical properties for determining the number of layers in arbitrarily stacked multilayer graphenes // Carbon. 2014. V. 77. P. 454–461.
  18. Simon N.J., Drexler E.S., Reed R.P. Properties of copper and copper alloys at cryogenic temperatures NIST Monograph 177. 1992. 850 p.
  19. Siddappa P.G., Tariq A. Experimental estimation of thermal contact conductance across pressed copper–copper contacts at cryogenic-temperatures // Appl. Therm. Engineering. 2023. V. 219. P. 119412.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (526KB)
3.

下载 (544KB)
4.

下载 (835KB)
5.

下载 (500KB)
6.

下载 (580KB)
7.

下载 (167KB)
8.

下载 (1004KB)
9.

下载 (157KB)
10.

下载 (116KB)
11.

下载 (121KB)

版权所有 © К.А. Колесов, А.В. Маширов, А.В. Иржак, М.В. Чичков, Е.Ф. Сафрутина, Д.А. Киселев, А.С. Кузнецов, О.В. Белова, В.В. Коледов, В.Г. Шавров, 2023

##common.cookie##