On the nucleation of cracks near stress sources with weak singularities

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Analytical expressions are obtained for the configuration force and the value of elastic energy relaxation at the nucleation of a microcrack in a small neighborhood of an arbitrary singular stress source. When analyzing the conditions of crack nucleation at sources with weak divergences of the stress fields, ideas about the instantaneous nucleation of a crack of finite length are used. Simultaneous fulfillment of stress and energy conditions is considered as a criterion for the nucleation of such a crack. Within the framework of these representations, in the configuration space of the system parameters (geometric characteristics and strength of mesodefects, the value of external stress), the regions in which crack nucleation is possible in the case of a combined mesodefect, which is a superposition of the dipole of wedge disclinations and planar shear mesodefect, are determined. It is shown that the nucleation of the crack is significantly facilitated by the instability of the shear mesodefect.

Sobre autores

S. Kirikov

The Federal research center Institute of Applied Physics of the Russian Academy of Sciences

Email: pupynin.as@gmail.com
Nizhny Novgorod, 603024 Russia

V. Perevezentsev

The Federal research center Institute of Applied Physics of the Russian Academy of Sciences; National Research Lobachevsky State University of Nizhny Novgorod

Email: pupynin.as@gmail.com
Nizhny Novgorod, 603024 Russia; Nizhny Novgorod, 603022 Russia

A. Pupynin

The Federal research center Institute of Applied Physics of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: pupynin.as@gmail.com
Nizhny Novgorod, 603024 Russia

Bibliografia

  1. Рыбин В.В. Большие пластические деформации и разрушение металлов. М.: Металлургия, 1986. 224 с.
  2. Рыбин В.В., Зисман А.А., Золоторевский Н.Ю. Стыковые дисклинации в пластически деформируемых кристаллах // ФТТ. 1985. Т. 27. № 1. С. 181–186.
  3. Rybin V.V., Zisman A.A., Zolotorevsky N.Yu. Junction disclinations in plastically deformed crystals // Acta Metall. Mater. 1993. V. 41. № 7. P. 2211–2217.
  4. Владимиров В.И., Романов А.Е. Дисклинации в кристаллах. Л.: Наука, 1986. 224 с.
  5. Enikeev N.A., Orlova T.S., Alexandrov I.V., Romanov A.E. A physical criterion on grain subdivision during SPD // Solid State Phenomena. 2005. V. 101–102. P. 319–324.
  6. Nazarov A.A., Enikeev N.A., Orlova T.S., Romanov A.E., Alexandrov I.V., Beyerlein I.J., Valiev R.Z. Analysis of substructure evolution during simple shear of polycrystals by means of combined viscoplastic self-consistent and disclination modeling approach // Acta Mater. 2006. V. 54. № 4. P. 985–995.
  7. Romanov A.E., Kolesnikova A.L. Application of disclination concept to solid structures // Progr. Mater. Sci. 2009. V. 54. № 6. P. 740–769.
  8. Рыбин В.В., Перевезенцев В.Н., Свирина Ю.В. Физическая модель начальных стадий фрагментации поликристаллов в ходе развитой пластической деформации // ФММ. 2017. Т. 118. № 12. С. 999–1003.
  9. Zisman A.A., Rybin V.V. Basic configurations of interfacial and junction defects induced in a polycrystal by deformation of grains // Acta Mater. 1996. V. 44. P. 403–407.
  10. Рыбин В.В., Вергазов А.Н., Соломко Ю.В. Закономерности внутризеренного разрушения металлов с ОЦК решеткой // ФММ. 1978. Т. 46. № 3. С. 582–596.
  11. Gardner R.N., Pollock T.C., Wilsdorf H.G.F. Crack initiation at dislocation cell boundaries in the ductile fracture of metals // Mater. Sci. Eng. 1977. V. 29. P. 169–174.
  12. Koneva N.A., Trishkina L.I., Cherkasova T.V. Gradient dislocation substructures at fracture of polycrystalline Cu–Mn alloys // Lett. Mater. 2018. V. 8. № 4. P. 435–439.
  13. Рыбин В.В., Жуковский И.М. Дисклинационный механизм образования микротрещин // ФТТ. 1978. Т. 20. № 6. С. 1829–1835.
  14. Жуковский И.М., Рыбин В.В. Равновесные трещины во фрагментированных кристаллах // ФТТ. 1991. Т. 33. В. 4. С. 1286–1292.
  15. Vladimirov V.I., Gutkin M.Y., Romanov A.E. Effect of lamellar terminations on the physicomechanical properties of eutectic composites // Mech. Comp. Mater. 1987. V. 23. P. 313–319.
  16. Gutkin M.Y., Ovid’ko I.A. Disclinations, amorphization and microcrack generation at grain boundary junctions in polycrystalline solids // Phil. Mag. A. 1994. V. 70. № 4. P. 561–575.
  17. Gutkin M.Y., Ovid’ko I.A. Nanocracks at grain boundaries in nanocrystalline materials // Phil. Mag. Lett. 2004. V. 84. № 10. P. 655–663.
  18. Gutkin M.Y., Ovid’ko I.A., Skiba N.V. Generation of nanocracks at grain boundary disclinations in nanocomposite materials // Rev. Adv. Mater. Sci. 2005. V. 10. P. 483–489.
  19. Ovid’ko I.A., Sheinerman A.G. Triple junction nanocracks in deformed nanocrystalline materials // Acta Mater. 2004. V. 52. № 5. P. 1201–1209.
  20. Wu M.S., Zhou K., Nazarov A.A. Stability and relaxation mechanisms of a wedge disclination in an HCP bicrystalline nanowire // Model. Simul. Mater. Sci. Eng. 2006. V. 14. № 4. P. 647.
  21. Luo J., Zhou K., Xiao Z.M. Stress investigation on a Griffith crack initiated from an eccentric disclination in a cylinder // Acta mech. 2009. V. 202. № 1. P. 65–77.
  22. Luo J., Xiao Z.M., Zhou K. Stress analysis on a Zener crack nucleation from an eccentric wedge disclination in a cylinder // Int. J. Eng. Sci. 2009. V. 47. № 9. P. 811–820.
  23. Wang T., Luo J., Xiao Z., Chen J. On the nucleation of a Zener crack from a wedge disclination dipole in the presence of a circular inhomogeneity // Eur. J. Mech.-A/Solids. 2009. V. 28. № 4. P. 688–696.
  24. Luo J., Li Z., Xiao Z. On the stress field and crack nucleation behavior of a disclinated nanowire with surface stress effects // Acta Mech. 2014. V. 225. № 11. P. 3187–3197.
  25. Wu M.S. Energy analysis of Zener-Griffith crack nucleation from a disclination dipole // Int. J. Plast. 2018. V. 100. P. 142–155.
  26. Wu M.S. Crack nucleation from a wedge disclination dipole with shift of rotation axes // Int. J. Fract. 2018. V. 212. № 1. P. 53–66.
  27. Кириков С.В., Перевезенцев В.Н. Анализ условий существования стабильных микротрещин в упругом поле напряжений от ротационно–сдвигового мезодефекта // Письма о материалах. 2021. Т. 11. № 1(41). С. 50–54.
  28. Кириков С.В., Перевезенцев В.Н., Пупынин А.С. О влиянии внешнего напряжения на устойчивость трещины, расположенной вблизи диполя клиновых дисклинаций // ФММ. 2021. Т. 122. № 8. С. 880–885.
  29. Perevesentsev V.N., Kirikov S.V., Zolotorevsky N.Yu. Analysis of the conditions of crack nucleation during lattice dislocations transition through grain boundary // Mater. Phys. Mech. 2022. V. 49. № 1. P. 173–181.
  30. Perevezentsev V.N., Kirikov S.V., Svirina Ju.V. The role of a shear planar mesodefect in the nucleation of a crack at a grain junction due to athermal grain boundary sliding // Lett. Mater. 2021. V. 11. № 4(44). P. 467–472.
  31. Leguillon D. Strength or toughness? A criterion for crack onset at a notch // Eur. J. Mech. – A/Solids. 2002. V. 21. № 1. P. 61–72.
  32. Taylor D., Cornetti P., Pugno N. The fracture mechanics of finite crack extension // Eng. Fract. Mech. 2005. V. 72. P. 1021–1038.
  33. Taylor D. The theory of critical distances // Eng. Fract. Mech. 2008. V. 75. № 7. P. 1696–1705.
  34. Weißgraeber P., Becker W., Leguillon D. A review of Finite Fracture Mechanics: crack initiation at singular and non-singular stress raisers // Arch. Appl. Mech. (Ing. Archiv). 2016. V. 86. № 1–2. P. 375–401.
  35. Naimark O.B. Duality of singularities of multiscale damage localization and crack advance: length variety in theory of critical distances // Frattura ed Integrita Strutturale. 2019. V. 13. № 49. P. 272–281.
  36. Инденбом В.Л. О критериях разрушения в дислокационных теориях прочности // ФТТ. 1961. Т. 3. № 7. С. 2071–2079.
  37. Leguillon D., Siruguet K. Finite fracture mechanics – application to the onset of a crack at a bimaterial corner // IUTAM symposium on analytical and computational fracture mechanics of non-homogeneous materials. Springer, Dordrecht, 2002. P. 11–18.
  38. Martin E., Leguillon D., Carrere N. Finite fracture mechanics: a useful tool to analyze cracking mechanisms in composite materials // The Structural Integrity of Carbon Fiber Composites. Springer, Cham, 2017. P. 529–548.
  39. Кириков С.В., Пупынин А.С., Свирина Ю.В. Анализ локальных полей упругих напряжений, генерируемых ротационно-сдвиговыми мезодефектами вблизи стыков зерен // Проблемы прочности и пластичности. 2021. Т. 83. № 2. С. 235–244.
  40. Кириков С.В., Перевезенцев В.Н., Пупынин А.С. Влияние стыковых дисклинаций на зарождение трещины при наведенном зернограничном проскальзывании // Дефомация и разрушение материалов. 2023. № 2. С. 2–11.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (18KB)
3.

Baixar (68KB)
4.

Baixar (23KB)
5.

Baixar (346KB)
6.

Baixar (92KB)

Declaração de direitos autorais © С.В. Кириков, В.Н. Перевезенцев, А.С. Пупынин, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies