Magneto-impedance tomography of CoFeTaSiB amorphous wires

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The paper presents the results of a study of the radial distribution of the magnetic permeability of an Co66Fe4Ta2.5Si12.5B15 amorphous wire with a radius of 55 μm. The study was performed using magneto-impedance tomography in the frequency range of alternating current from 0.01 to 100 MHz. It was found that the magnetic permeability significantly depends on the radial coordinate. Wherein the inner regions of the wire have predominantly axial anisotropy, while the outer layer about 2.5 µm thick has circular anisotropy. It is shown that the magnetoelastic mechanism is not the main one in the formation of magnetic anisotropy in the surface layer of the wire.

Sobre autores

D. Bukreev

IRKUTSK STATE UNIVERSITY

Email: da.bukreev@gmail.com
Irkutsk, Russia 664003

M. Derevyanko

IRKUTSK STATE UNIVERSITY

Email: da.bukreev@gmail.com
Irkutsk, Russia 664003

A. Moiseev

IRKUTSK STATE UNIVERSITY

Email: da.bukreev@gmail.com
Irkutsk, Russia 664003

A. Semirov

IRKUTSK STATE UNIVERSITY

Autor responsável pela correspondência
Email: da.bukreev@gmail.com
Irkutsk, Russia 664003

Bibliografia

  1. Beach R.S., Berkowitz A.E. Giant magnetic field dependent impedance of amorphous FeCoSiB wire // Appl. Phys. Letters. 1994. V. 64. P. 3652–3654.
  2. Букреев Д.А., Деревянко М.С., Голубев Д.Н., Моисеев А.А., Семиров А.В. Магнитная предыстория и стрессимпедансный эффект в аморфных проводах CoFeNbSiB // ФММ. 2022. Т. 123. С. 767–772.
  3. Wang K., Tajima S., Asano Y., Okuda Y., Hamada N., Cai C., Uchiyama T. Detection of P300 brain waves using a Magneto-Impedance sensor // International Journal on Smart Sensing and Intelligent Systems. 2020. V. 7. P. 1–4.
  4. Chen J., Li J., Li Y., Chen Y., Xu L. Design and Fabrication of a Miniaturized GMI Magnetic Sensor Based on Amorphous Wire by MEMS Technology // Sensors. 2018. V. 18. P. 732.
  5. Fodil K., Denoual M., Dolabdjian C., Treizebre A., Senez V. In-flow detection of ultra-small magnetic particles by an integrated giant magnetic impedance sensor // Appl. Phys. Lett. 2016. V. 108. P. 173701.
  6. Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. М.: Наука, 1982. 621 с.
  7. Vázquez M., Hernando A. A soft magnetic wire for sensor applications // J. Physics D: Applied Physics. 1996. V. 29. P. 939–949.
  8. Antonov A.S., Borisov V.T., Borisov O.V., Pozdnyakov V.A., Prokoshin A.F., Usov N.A. Residual quenching stresses in amorphous ferromagnetic wires produced by an in-rotating-water spinning process // J. Phys. D.: Appl. Phys. 1999. V. 32. P. 1788–1794.
  9. Eggers T., Thiabgoh O., Jiang S.D., Shen H.X., Liu J.S., Sun J.F., Srikanth H., Phan M.H. Tailoring circular magnetic domain structure and high frequency magneto-impedance of melt-extracted Co69.25Fe4.25Si13B13.5 microwires through Nb doping // AIP Adv. 2017. V. 7. P. 056643.
  10. Shen H., Liu J., Wang H., Xing D., Chen D., Liu Y., Sun J. Optimization of mechanical and giant magneto-impedance (GMI) properties of melt-extracted Co-rich amorphous microwires // Physica Status Solidi (A) Applications and Materials Science. 2014. V. 211. P. 1668–1673.
  11. Sarkar P., Basu Mallick A., Roy R.K., Panda A.K., Mitra A. Structural and Giant Magneto-impedance properties of Cr-incorporated Co–Fe–Si–B amorphous microwires // J. Magn. Magn. Mater. 2012. V. 324. P. 1551–1556.
  12. Knobel M., Sánchez M.L., Gómez-Polo C., Marín P., Vázquez M., Hernando A. Giant magneto-impedance effect in nanostructured magnetic wires // J. Appl. Phys. 1996. V. 79. P. 1646–1654.
  13. Bukreev D.A., Derevyanko M.S., Moiseev A.A., Svalov A.V., Semirov A.V. The Study of the Distribution of Electrical and Magnetic Properties over the Conductor Cross-Section Using Magnetoimpedance Tomography: Modeling and Experiment // Sensors. 2022. V. 22. P. 9512.
  14. Melnikov G.Y., Lepalovskij V.N., Svalov A.V., Safronov A.P., Kurlyandskaya G.V. Magnetoimpedance Thin Film Sensor for Detecting of Stray Fields of Magnetic Particles in Blood Vessel // Sensors. 2021. V. 21. P. 3621.
  15. Букреев Д.А., Деревянко М.С., Моисеев А.А., Кудрявцев В.О., Курляндская Г.В., Семиров А.В. Моделирование и экспериментальное изучение частотных зависимостей импеданса композитных проводов // ФММ. 2022. V. 123. С. 949–954.
  16. Bukreev D.A., Derevyanko M.S., Moiseev A.A., Semirov A.V. Effect of tensile stress on cobalt-based amorphous wires impedance near the magnetostriction compensation temperature // J. Magn. Magn. Mater. 2020. V. 500. P. 166436.
  17. Bukreev D.A., Derevyanko M.S., Moiseev A.A., Semirov A.V, Savin P.A., Kurlyandskaya G.V. Magnetoimpedance and Stress-Impedance Effects in Amorphous CoFeSiB Ribbons at Elevated Temperatures // Mater. 2020. V. 13. P. 3216.
  18. Severino A.M., Gómez-Polo C., Marín P., Vázquez M. Influence of the sample length on the switching process of magnetostrictive amorphous wire // J. Magn. Magn. Mater. 1992. V. 103. P. 117–125.
  19. Usov N.A., Antonov A.S., Lagar’kov A.N. Theory of giant magneto-impedance effect in amorphous wires with different types of magnetic anisotropy // J. Magn. Magn. Mater. 1998. V. 185. P. 159–173.
  20. Гаврилюк А.А., Ковалева Н.П., Гаврилюк А.В., Гаврилюк Б.В., Семенов А.Л., Моховиков А.Ю. Влияние неоднородного рельефа поверхности на магнитные и магнитоупругие свойства аморфных металлических сплавов на основе железа // Изв. вузов. Физика. 2005. Т. 48. № 7. С. 32–39.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (99KB)
3.

Baixar (249KB)
4.

Baixar (70KB)
5.

Baixar (179KB)
6.

Baixar (603KB)

Declaração de direitos autorais © Д.А. Букреев, М.С. Деревянко, А.А. Моисеев, А.В. Семиров, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies