STRUCTURE AND PROPERTIES OF THE Al-Zn-Mg-Cu-Zr-Y(Er) ALLOYS SHEETS DOPED BY MANGANESE

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The structure and properties of rolled Zn-Mg-Cu-Zr-Y(Er) alloys alloyed with manganese and modified with titanium have been studied. According to the results of tensile tests in the deformed and annealed state at 120-150°C for one hour, AlZnMgCuMnTi and AlZnMgCuMnTiEr alloys have a high yield strength of 417-456 MPa with a small relative elongation of 2-5.2%. The presence of additional dispersant-forming elements of yttrium and erbium increases the particle precipitation density during homogenization annealing, increasing the temperature of the onset of recrystallization and the hardness of the rolled alloys. After one hour annealing at 350°С, the structure of the AlZnMgCuMnTi alloy is completely recrystallized, while recrystallization is just beginning in alloys with yttrium and erbium. After quenching from 465°C and aging at 120°C, the test alloys have a yield strength of more than 410 MPa, a tensile strength of more than 520 MPa, and an elongation of more than 10%. The obtained properties are higher than the properties of clad sheets of high-strength heat-strengthened alloy Al-Zn-Mg-Cu (B95A) and bars of AlZn4.5Mg1.5Mn and AlZnMg1.5Mn alloys and are at the level of properties of bars of Al-Zn-Mg-Cu alloy (B95).

Sobre autores

M. Glavatskikh

MISiS National University of Science and Technology

Email: glavatskikh@edu.misis.ru
Moscow, 119049 Russia

R. Barkov

MISiS National University of Science and Technology

Email: glavatskikh@edu.misis.ru
Moscow, 119049 Russia

M. Khomutov

MISiS National University of Science and Technology

Email: glavatskikh@edu.misis.ru
Moscow, 119049 Russia

A. Pozdniakov

MISiS National University of Science and Technology

Autor responsável pela correspondência
Email: glavatskikh@edu.misis.ru
Moscow, 119049 Russia

Bibliografia

  1. Gerchikova N.S., Fridlyander I.N., Zaitseva N.I., Kirkina N.N. Change in the structure and properties of Al−Zn−Mg alloys // Met. Sci. & Heat Treat. 1972. V. 14(3). P. 233–236.
  2. Золоторевский В.С. Микростроение и механические свойства литых алюминиевых сплавов / Дисс. док. техн. наук. М.: МИСиС, 1978.
  3. Zou Y., Wu X., Tang S., Zhu Q., Song H., Guo M., Cao L. Investigation on microstructure and mechanical properties of Al–Zn–Mg–Cu alloys with various Zn/Mg ratios // J. Mater. Sci. & Tech. 2021. V. 85. P. 106–117.
  4. Новиков И.И. Горячеломкость цветных металлов и сплавов. М.: Наука, 1966.
  5. Чеверикин В.В. Влияние эвтектикообразующих элементов на структуру и свойства высокопрочных сплавов системы Al–Zn–Mg / Дис. канд. техн. наук, М.: МИСиС, 2007.
  6. Pan Y., Zhang D., Liu H., Zhuang L., Zhang J. Precipitation hardening and intergranular corrosion behavior of novel Al–Mg–Zn(–Cu) alloys // J. All. & Comp. 2021. V. 853. P. 157199.
  7. ГОСТ 4784–2019. Алюминий и сплавы алюминиевые деформируемые. Марки.
  8. ГОСТ 21631–76. Листы из алюминия и алюминиевых сплавов. ТУ.
  9. Zolotorevskiy V.S., Pozdniakov A.V., Churyumov A.Yu. Search for Promising Compositions for Developing New Multiphase Casting Alloys Based on Al–Zn–Mg Matrix Using Thermodynamic Calculations and Mathematic Modeling // Phys. Met. Metall. 2014. V. 115. № 3. P. 286–294.
  10. Pozdniakov A.V., Zolotorevskiy V.S., Mamzurina O.I. Determining the hot cracking index of Al–Mg–Zn casting alloys calculated using the effective solidification range // Int. J. Cast Met. Res. 2015. V. 28. № 5. P. 318–321.
  11. Shurkin P.K., Akopyan T.K., Galkin S.P., Aleshchenko A.S. Effect of Radial Shear Rolling on the Structure and Mechanical Properties of a New-Generation High-Strength Aluminum Alloy Based on the Al–Zn–Mg–Ni–Fe System // Met. Sci. & Heat Treat. V. 60. P. 764–769.
  12. Ryum N. Precipitation and recrystallization in an Al–0.5 wt % Zr-alloy // Acta Metall. 1969. V. 17. P. 269–278.
  13. Nes E., Billdal H. The mechanism of discontinuous precipitation of the metastable Al3Zr phase from an Al–Zr solid solution // Acta Metall. 1977. V. 25. P. 1039–1046.
  14. Knipling K.E., Dunand D.C., Seidman D.N. Nucleation and Precipitation Strengthening in Dilute Al–Ti and Al–Zr Alloys // Metall. and Mater. Trans. A. 2007. V. 38. P. 2552–2563.
  15. Белов Н.А., Алабин А.Н., Прохоров А.Ю. Влияние добавки циркония на прочность и электросопротивление холоднокатаных алюминиевых листов // Изв. вузов. Цвет. Металл. 2009. № 4. С. 42–47.
  16. Белов Н.А., Алабин А.Н., Прохоров А.Ю. Влияние отжига на электросопротивление и механические свойства холоднодеформированного сплава Al–0.6% (мас.) Zr // Цвет. Мет. 2009. № 10. С. 65–68.
  17. Souza P.H.L., de Oliveira C.A.S., do Vale Quaresma J.M. Precipitation hardening in dilute Al–Zr alloys // J. Mater. Res. and Tech. 2018. V. 7. P. 66–72.
  18. Zakharov V.V., Fisenko I.A. Effect of Homogenization on the Structure and Properties of Alloy of the Al–Zn–Mg–Sc–Zr System // Met. Sci. & Heat Treat. 2018. V. 60. P. 354–359.
  19. Mikhaylovskaya A.V., Kotov A.D., Pozdniakov A.V., Portnoy V.K. A high-strength aluminium-based alloy with advanced superplasticity // J. All. Comp. 2014. V. 599. P. 139–144.
  20. Kotov A.D., Mikhaylovskaya A.V., Borisov A.A., Yakovtseva O.A., Portnoy V.K. High-strain-rate superplasticity of the Al–Zn–Mg–Cu alloys with Fe and Ni additions // Phys. Met. Metall. 2017. V. 118. P. 913–921.
  21. Kotov A.D., Mikhaylovskaya A.V., Portnoy V.K. Effect of the solid-solution composition on the superplasticity characteristics of Al–Zn–Mg–Cu–Ni–Zr Alloys // Phys. Met. Metall. 2014. V. 115. P. 730–735.
  22. Petrova A.N., Brodova I.G., Razorenov S.V., Shorokhov E.V., Akopyan T.K. Mechanical Properties of the Al–Zn–Mg–Fe–Ni Alloy of Eutectic Type at Different Strain Rates // Phys. Met. Metall. 2019. V. 120. P. 1221–1227.
  23. Brodova I.G., Shirinkina I.G., Rasposienko D.Yu., Akopyan T.K. Structural Evolution in the Quenched Al–Zn–Mg–Fe–Ni Alloy during Severe Plastic Deformation and Annealing // Phys. Met. Metall. 2020. V. 121. P. 899–905.
  24. Shirinkina I.G., Brodova I.G. Annealing-Induced Structural–Phase Transformations in an Al–Zn–Mg–Fe–Ni Alloy after High Pressure Torsion // Phys. Met. Metall. 2020. V. 121. P. 344–351.
  25. Pozdniakov A.V., Barkov R.Y. Microstructure and materials characterisation of the novel Al–Cu–Y alloy // Mater. Sci. Tech. 2018. V. 34. №12. P. 1489–1496.
  26. Amer S.M., Barkov R.Y., Yakovtseva O.A., Pozdniakov A.V. Comparative Analysis of Structure and Properties of Quasibinary Al–6.5Cu–2.3Y and Al–6Cu–4.05Er Alloys // Phys. Met. Metall. 2020. V. 121. № 5. P. 476–482.
  27. Pozdnyakov A.V., Barkov R.Yu., Sarsenbaev Zh., Amer S.M. and Prosviryakov A.S. Evolution of Microstructure and Mechanical Properties of a New Al–Cu–Er Wrought Alloy // Phys. Met. Metall. 2019. V. 120. № 6. P. 614–619.
  28. Pozdniakov A.V., Barkov R.Yu, Amer S.M., Levchenko V.S., Kotov A.D., Mikhaylovskaya A.V. Microstructure, mechanical properties and superplasticity of the Al–Cu–Y–Zr alloy // Mater. Sci. Eng. A. 2019. V. 758. P. 28–35.
  29. Amer S.M., Barkov R.Yu., Yakovtseva O.A., Loginova I.S., Pozdniakov A.V. Effect of Zr on microstructure and mechanical properties of the Al–Cu–Er alloy //Mater. Sci. Tech. 2020. V. 36. № 4. P. 453–459.
  30. Amer S.M., Mikhaylovskaya A.V., Barkov R.Yu., Kotov A.D., Mochugovskiy A.G., Yakovtseva O.A., Glavatskikh M.V., Loginova I.S., Medvedeva S.V., Pozdniakov A.V. Effect of Homogenization Treatment Regime on Microstructure, Recrystallization Behavior, Mechanical Properties, and Superplasticity of Al–Cu–Er–Zr Alloy // JOM. 2021. V. 73. № 10. P. 3092–3101.
  31. Amer S.M., Barkov R.Yu., Pozdniakov A.V. Effect of Mn on the Phase Composition and Properties of Al–Cu–Y–Zr Alloy // Phys. Met. Metall. 2020. V. 121. № 12. P. 1227–1232.
  32. Amer S., Yakovtseva O., Loginova I., Medvedeva S., Prosviryakov Al., Bazlov A., Barkov R., Pozdniakov A. The Phase Composition and Mechanical Properties of the Novel Precipitation-Strengthening Al–Cu–Er–Mn–Zr Alloy // Appl. Sci. 2020. V. 10. P. 5345.
  33. Amer S.M., Barkov R.Y., Prosviryakov A.S., Pozdniakov A.V. Structure and properties of new heat-resistant cast alloys based on the Al–Cu–Y and Al–Cu–Er systems // Phys. Met. Metall. 2021. V. 122. P. 908–914.
  34. Amer S.M., Barkov R.Y., Prosviryakov A.S., Pozdniakov A.V. Structure and properties of new wrought Al–Cu–Y and Al–Cu–Er based alloys // Phys. Met. Metall. 2021. V. 122. P. 915–922.
  35. Glavatskikh M.V., Barkov R.Yu., Khomutov M.G., Pozdniakov A.V. The Effects of Yttrium and Erbium on the Phase Composition and Aging of the Al–Zn–Mg–Cu–Zr Alloy with a High Copper Content // Phys. Met. Metall. 2022. V. 123. P. 617–623.
  36. ГОСТ 21488–97. Прутки прессованные из алюминиевых сплавов. ТУ.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (2MB)
3.

Baixar (300KB)
4.

Baixar (111KB)
5.

Baixar (6MB)
6.

Baixar (190KB)

Declaração de direitos autorais © М.В. Главатских, Р.Ю. Барков, М.Г. Хомутов, А.В. Поздняков, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies