On the Precipitation of the -Phase {111} Al Plates in the Al–Cu–Mg Alloy

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The precipitation of Ω-phase {111}α plates in the Al–Cu–Mg alloy has been investigated at a Cu/Mg ratio > 10 and low Si content. Unlike Al–Cu–Mg alloys containing Ag, nanoscale plates with an {111}α habit plane has been found for the first time to precipitate in the alloy according to a heterogeneous mechanism, namely, along low-angle boundaries, dislocation lines, and at the θ′-phase/Al-matrix interphase
boundary.

Sobre autores

I. Zuiko

Belgorod State University

Email: zuiko_ivan@bsu.edu.ru
Belgorod, 308015 Russia

M. Gazizov

Belgorod State University

Email: zuiko_ivan@bsu.edu.ru
Belgorod, 308015 Russia

R. Kaibyshev

Belgorod State University

Autor responsável pela correspondência
Email: zuiko_ivan@bsu.edu.ru
Belgorod, 308015 Russia

Bibliografia

  1. Polmear I., StJohn D., Nie J.-F., Qian M. Light Alloys. Metallurgy of the Light Metals, 5th ed., Butterworth-Heinemann, 2017.
  2. Zuiko I., Kaibyshev R. Aging behavior of an Al–Cu–Mg alloy // J. Alloys Compd. 2018. V. 759. P. 108–119. https://doi.org/10.1016/j.jallcom.2018.05.053
  3. Zuiko I., Kaibyshev R. Effect of plastic deformation on the ageing behaviour of an Al–Cu–Mg alloy with a high Cu/Mg ratio // Mater. Sci. Eng. A. 2018. V. 737. P. 401–412. https://doi.org/10.1016/j.msea.2018.09.017
  4. Wang S.C., Starink M.J. Precipitates and intermetallic phases in precipitation hardening Al–Cu–Mg–(Li) based alloys // Int. Mat. Rev. 2005. V. 50. P. 193–215. https://doi.org/10.1179/174328005X14357
  5. Gazizov M., Kaibyshev R. Effect of pre-straining on the aging behavior and mechanical properties of an Al–Cu–Mg–Ag alloy // Mater. Sci. Eng. A. 2015. V. 625. P. 119–130. https://doi.org/10.1016/j.msea.2014.11.094
  6. Gable B.M., Shiflet G.J., Starke E.A. The effect of Si additions on Ω precipitation in Al–Cu–Mg–(Ag) alloys // Scr. Mater. 2004. V. 50. P. 149–153. https://doi.org/10.1016/j.scriptamat.2003.09.004
  7. Reich L., Murayama M., Hono K. Evolution of Ω phase in an Al–Cu–Mg–Ag alloy–a three-dimensional atom probe study // Acta. Mater. 1998. V. 46. P. 6053–6062. https://doi.org/10.1016/S1359-6454(98)00280-8
  8. Yoshimura R., Konno T.J., Abe E., Hiraga K. Transmission electron microscopy study of the evolution of precipitates in aged Al–Li–Cu alloys: the θ' and T1 phases // Acta. Mater. 2003. V. 51. P. 4251–4266. https://doi.org/10.1016/S1359-6454(03)00253-2
  9. Yoshimura R., Konno T.J., Abe E., Hiraga K. Transmission electron microscopy study of the early stage of precipitates in aged Al–Li–Cu alloys // Acta. Mater. 2003. V. 51. P. 2891–2903. https://doi.org/10.1016/S1359-6454(03)00104-6
  10. Mukhopadhyay A.K. Coprecipitation of Ω and σ phases in Al–Cu–Mg–Mn alloys containing Ag and Si // Metall. Mater. Trans. A. 2002. V. 33. P. 3635–3648. https://doi.org/10.1007/s11661-002-0238-7
  11. Mondol S., Alam T., Banerjee R., Kumar S., Chattopadhyay K. Development of a high temperature high strength Al alloy by addition of small amounts of Sc and Mg to 2219 alloy // Mater. Sci. Eng. A. 2017. V. 687. P. 221–231. https://doi.org/10.1016/j.msea.2017.01.037
  12. Auld J.H., Vietz J.T., Polmear I.J. T-phase Precipitation induced by the Addition of Silver to an Aluminium–Copper–Magnesium Alloy // Nature. 1966. V. 209. P. 703–704. https://doi.org/10.1038/209703a0
  13. Sano N., Hono K., Sakurai T., Hirano K. Atom-probe analysis of Ω and θ' phases in an Al–Cu–Mg–Ag alloy // Scr. Metall. Mater. 1991. V. 25. P. 491–496. https://doi.org/10.1016/0956-716X(91)90216-N
  14. Araullo-Peters V., Gault B., de Geuser F., Deschamps A., Cairney J.M. Microstructural evolution during ageing of Al–Cu–Li–x alloys // Acta. Mater. 2014. V. 66. P. 199–208. https://doi.org/10.1016/j.actamat.2013.12.001
  15. Gazizov M.R., Boev A.O., Marioara C.D., Holmestad R., Aksyonov D.A., Gazizova M.Yu., Kaibyshev R.O. Precipitate/matrix incompatibilities related to the {111}Al Ω plates in an Al–Cu–Mg–Ag alloy // Mater. Charact. 2021. V. 182. P. 111586. https://doi.org/10.1016/j.matchar.2021.111586
  16. Ferragut R., Dupasquier A., Macchi C., Somoza A., Lumley R., Polmear I. Vacancy–solute interactions during multiple-step ageing of an Al–Cu–Mg–Ag alloy // Scr. Mater. 2009. V. 60. P. 137–140. https://doi.org/10.1016/j.scriptamat.2008.09.011
  17. Wenner S., Marioara C.D., Andersen S.J., Ervik M., Holmestad R. A hybrid aluminium alloy and its zoo of interacting nano-precipitates // Mater. Charact. 2015. V. 106. P. 226–231. https://doi.org/10.1016/j.matchar.2015.06.002
  18. Dahmen U., Westmacott K.H. The mechanism of φ' precipitation on climbing dislocations in Al–Cu // Scr. Metall. 1983. V. 17. P. 1241–1246. https://doi.org/10.1016/0036-9748(83)90292-2
  19. Gumbmann E., Lefebvre W., De Geuser F., Sigli C., Deschamps A. The effect of minor solute additions on the precipitation path of an Al–Cu–Li alloy // Acta Mater. 2016. V. 115. P. 104–114. https://doi.org/10.1016/j.actamat.2016.05.050
  20. Nagai Y., Murayama M., Tang Z., Nonaka T., Hono K., Hasegawa M. Role of vacancy–solute complex in the initial rapid age hardening in an Al–Cu–Mg alloy // Acta Mater. 2001. V. 49. P. 913–920. https://doi.org/10.1016/S1359-6454(00)00348-7
  21. Yoshida H., Hashimoto H., Yokota Y., Ajika N. High Resolution Lattice Images of G.P. Zones in an Al–3.97 wt % Cu Alloy// Trans. JIM. 1983. V. 24. P. 378–385. https://doi.org/10.2320/matertrans1960.24.378
  22. Tung C.-H., Chiu R.-L., Chang P.-H. Observations of guinier-preston zones in an as-deposited Al–1 wt % Si–0.5 wt % Cu thin film // Scr. Mater. 1996. V. 34. P. 1473–1477. https://doi.org/10.1016/1359-6462(96)00004-8
  23. Ying P., Liu Z., Bai S., Liu M., Lin L., Xia P., Xia L. Effects of pre-strain on Cu–Mg co-clustering and mechanical behavior in a naturally aged Al–Cu–Mg alloy // Mater. Sci. Eng. A. 2017. V. 704. P. 18–24. https://doi.org/10.1016/j.msea.2017.06.097
  24. Zuiko I.S., Mironov S., Betsofen S., Kaibyshev R. Suppression of abnormal grain growth in friction-stir welded Al–Cu–Mg alloy by lowering of welding temperature // Scr. Mater. 2021. V. 196. P. 113765. https://doi.org/10.1016/j.scriptamat.2021.113765
  25. Zuiko I.S., Gazizov M.R., Kaibyshev R.O. Effect of thermomechanical treatment on the microstructure, phase composition, and mechanical properties of Al–Cu–Mn–Mg–Zr alloy // Phys. Met. Metallogr. 2016. V. 117. P. 906–919. https://doi.org/10.1134/S0031918X16090088
  26. Gable B.M., Zhu A.W., Csontos A.A., Starke E.A. The role of plastic deformation on the competitive microstructural evolution and mechanical properties of a novel Al–Li–Cu–X alloy // J. Light Metals. 2001. V. 1. P. 1–14. https://doi.org/10.1016/S1471-5317(00)00002-X
  27. Cassada W.A., Shiflet G.J., Starke E.A. Mechanism of Al2CuLi (T1) Nucleation and Growth // Met. Trans. A. 1991. V. 22. P. 287–297. https://doi.org/10.1007/BF02656798

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (2MB)
4.

Baixar (1MB)
5.

Baixar (1MB)

Declaração de direitos autorais © И.С. Зуйко, М.Р. Газизов, Р.О. Кайбышев, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies