Evolution of the structure, texture and mechanical properties of a cold-swaged austenitic stainless steel during post-deformation annealing

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this work, we studied the effect of annealing temperature on the structure and texture, as well as the mechanical properties of the austenitic stainless steel AISI 316. Initially, the program material was subjected to cold rotary swaging with a reduction of 95%. Studies showed the formation of the structure and texture gradient during preliminary plastic deformation. Annealing at low temperatures (500-600°C) provoked polygonization, while the intensity of the and texture components remained unchanged. After annealing at 700°С, the onset of recrystallization was observed only in the subsurface layers of the rod. As a result of annealing at 800–900°C, static recrystallization occurred over the entire cross section of the rod, which caused dissipation of the texture gradient. Annealing at temperatures of 400–600°C was accompanied by an increase in the strength and hardness characteristics. Meanwhile, ductility also increased with the annealing temperature. Annealing at 700°C resulted in softening of the program material almost to the level of the initial cold-swaged state and a significant increase in ductility up to 16%.

作者简介

R. Chernichenko

Federal State Autonomous Educational Institution of Higher Education «Belgorod State National Research University»

Email: chernichenko@bsu.edu.ru
Belgorod, 308015 Russia

D. Panov

Federal State Autonomous Educational Institution of Higher Education «Belgorod State National Research University»

Email: dimmak-panov@mail.ru
Belgorod, 308015 Russia

S. Naumov

Federal State Autonomous Educational Institution of Higher Education «Belgorod State National Research University»

Email: dimmak-panov@mail.ru
Belgorod, 308015 Russia

E. Kudryavtsev

Federal State Autonomous Educational Institution of Higher Education «Belgorod State National Research University»

Email: dimmak-panov@mail.ru
Belgorod, 308015 Russia

V. Mirontsov

Federal State Autonomous Educational Institution of Higher Education «Belgorod State National Research University»

Email: dimmak-panov@mail.ru
Belgorod, 308015 Russia

G. Salishchev

Federal State Autonomous Educational Institution of Higher Education «Belgorod State National Research University»

Email: dimmak-panov@mail.ru
Belgorod, 308015 Russia

A. Pertsev

he Perm Scientific Research Technological Institute

编辑信件的主要联系方式.
Email: dimmak-panov@mail.ru
614990, Perm, Russia

参考

  1. Chattopadhyay S., Anand G., Chowdhury S.G., Manna I. Effect of reverse austenitic transformation on mechanical property and associated texture evolution in AISI 316 austenitic stainless steel processed by low temperature rolling and annealing // Mater. Sci. Eng.: A. 2018. V. 734. P. 139–148.
  2. Lu J.S., Lu Q.S., Xue J. Corrosion Resistance of Three 316 Stainless Steels // Adv. Mater. Research. 2014. V. 936. P. 1097–1101.
  3. Panov D., Pertsev A., Smirnov A., Khotinov V., Simonov Y. Metastable Austenitic Steel Structure and Mechanical Properties Evolution in the Process of Cold Radial Forging // Materials. 2019. V. 12. № 13. P. 2058.3.
  4. Saboori A., Aversa A., Marchese G., Biamino S., Lombardi M., Fino P. Microstructure and mechanical properties of AISI 316L Produced by directed energy deposition-based additive manufacturing: a review // Appl. Sci. 2020. V. 10(9). P. 3310.
  5. Wang Q., Zhang M., Yang C., Yang Y., Zhou E., Liu P., Jin D., Xu D., Wu L., Wang F. Oral microbiota accelerates corrosion of 316L stainless steel for orthodontic applications // J. Mater. Sci. Techn. 2022. V. 128. P. 118–132.
  6. Gray G.T., Livescu V., Rigg P.A., Trujillo C.P., Cady C.M., Chen S.R., Carpenter J.S., Lienert T.J., Fensin S.J. Structure/property (constitutive and spallation response) of additively manufactured 316L stainless steel // Acta Mater. 2017. V. 138. P. 140–149.
  7. Yan F.K., Liu G.Z., Tao N.R., Lu K. Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles // Acta Mater. 2012. V. 60. P.1059–1071.
  8. Liu M., Gong W., Zheng R., Li J., Zhang Z., Gao S., Ma C., Tsuji N. Achieving excellent mechanical properties in type 316 stainless steel by tailoring grain size in homogeneously recovered or recrystallized nanostructures // Acta Mater. 2022. V. 226. P. 117629.
  9. Wu Y., Dong X., Yu Q. An upper bound solution of axial metal flow in cold radial forging process of rods // Intern. J. Mechan. Sci. 2014. V. 85. P. 120–129.
  10. Panov D., Chernichenko R., Kudryavtsev E., Klimenko D., Naumov S., Pertcev A. Effect of Cold Swaging on the Bulk Gradient Structure Formation and Mechanical Properties of a 316-Type Austenitic Stainless Steel // Materials. 2022. V. 15. № 7. P. 2464.
  11. Panov D.O., Chernichenko R.S., Naumov S.V., Pertcey A.S., Stepanov N.D., Zherebtsov S.V., Salishchev G.A. Excellent strength-toughness synergy in metastable austenitic stainless steel due to gradient structure formation. // Mater. Letters. 2021. V. 303. P. 130585.
  12. Panov D.O., Smirnov A.I. and Pertcev A.S. Formation of Structure in Metastable Austenitic Steel during Cold Plastic Deformation by the Radial Forging Method // Phys. Met. Metal. 2019. V. 120. P. 184–190.
  13. Akkuzin S. A., Litovchenko I. Yu. The Influence of Deformation and Short-Term Hightemperature Annealing on the Microstructure and Mechanical Properties of Austenitic Steel 17Cr–14Ni–3Mo (316 Type) // Russian Phys. J. 2019. V. 62. P. 1511–1517.
  14. Abramova M.M., Enikeev N.A., Sauvage X., Etienne A., Radiguet B., Ubyivovk E., Valiev R.Z. Thermal Stability and Extra-strength of an Ultrafine Grained Stainless Steel Produced by High Pressure Torsion // Rev. Adv. Mater. Sci. 2015. V. 43(1–2). P. 83–88.
  15. Смирнова Н.А., Левит В.И., Пилюгин В.П. Кузнецов Р.И., Давыдова Л.С., Сазонова В.А. Эволюция структуры ГЦК монокристаллов при больших пластических деформациях // ФММ. 1986. Т. 61. Вып. 6. С. 1170–1177.
  16. Глезер А.М. Томчук А.А. Черетаева А.О Особенности структуры и механических свойств малоуглеродистой стали обработанной в камере Бриджмена деформацией кручения в различных направлениях // Вестник ТГУ. 2013. Т. 18. Вып. 4–2. С. 1946–1947.
  17. Karaman I., Sehitoglu H., Chumlyakov Y.I., Maier H.J. The Deformation of Low-Stacking Fault-Energy Austenitic Steels // JOM. 2002. V. 54. P. 31–37.
  18. Singh G., Kalita B., Vishnu Narayanan K.I., Arora U.K., Mahapatra M.M., Jayaganthan R. Finite element analysis and experimental evaluation of residual stress of Zr-4 alloys processed through swaging // Metals. 2020. V. 10. P. 1281.
  19. Panov D., Kudryavtsev E., Naumov S., Klimenko D., Chernichenko R., Mirontsov V., Stepanov N., Zherebtsov S., Salishchev G., Pertcev A. Gradient Microstructure and Texture Formation in a Metastable Austenitic Stainless Steel during Cold Rotary Swaging // Materials. 2023. V. 16. № 4. P. 1706.
  20. Abramova M.M., Enikeev N.A., Valiev R.Z., Etienne A., Radiguet B., Ivanisenko Y., Sauvage X. Grain boundary segregation induced strengthening of an ultrafine-grained austenitic stainless steel // Mater. Letters. 2014. V. 136. P. 349–352.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (2MB)
3.

下载 (1MB)
4.

下载 (2MB)
5.

下载 (3MB)
6.

下载 (535KB)
7.

下载 (99KB)
8.

下载 (186KB)

版权所有 © Р.С. Черниченко, Д.О. Панов, С.В. Наумов, Е.А. Кудрявцев, В.В. Миронцов, Г.А. Салищев, А.С. Перцев, 2023

##common.cookie##