Change in the Radius of the First Coordination Sphere in Amorphous Alloys during Deformation

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Changes in the structure of amorphous alloys under deformation by high-pressure torsion, multiple-pass rolling, and pressure treatment have been studied using X-ray diffraction and scanning electron microscopy. It has been shown that under all types of deformation, shear bands are formed in amorphous alloys, which are regions of lower density compared to a surrounding undeformed amorphous matrix. Shear bands are regions of an increased free volume; the formation of bands results in steps occurring on the surface of samples. The number of shear bands and the surface morphology of deformed amorphous alloys are determined by the deformation type and physical properties of a material.

作者简介

G. Abrosimova

Institute of Solid State Physics, Russian Academy of Sciences

Email: gea@issp.ac.ru
Chernogolovka, Moscow Oblast, 142432 Russia

V. Astanin

Ufa University of Science and Technologies

Email: gea@issp.ac.ru
Ufa, 450000 Russia

N. Volkov

Institute of Solid State Physics, Russian Academy of Sciences

Email: gea@issp.ac.ru
Chernogolovka, Moscow Oblast, 142432 Russia

D. Gunderov

Institute of Physics of Molecules and Crystals, Ufa Federal Research Center, Russian Academy of Sciences

Email: gea@issp.ac.ru
Ufa, 450075 Russia

E. Postnova

Institute of Solid State Physics, Russian Academy of Sciences

Email: gea@issp.ac.ru
Chernogolovka, Moscow Oblast, 142432 Russia

A. Aronin

Institute of Solid State Physics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: gea@issp.ac.ru
Chernogolovka, Moscow Oblast, 142432 Russia

参考

  1. Perepezko J.H. Nucleation-controlled reactions and metastable structures // Prog. Mater.Sci. 2004. V. 49. P. 263–284. https://doi.org/10.1016/S0079-6425(03)00028-8
  2. Mu J., Fu H., Zhu Z., Wang A., Li H., Hu Z.Q., Zhang H. Synthesis and Properties of Al–Ni–La Bulk Metallic Glass // Adv. Eng. Mater. 2009. V. 11. P. 530–532. https://doi.org/10.1002/adem.200900100
  3. Yang B.J., Yao J.H., Chao Y.S., Wang J.Q., Ma E. Developing aluminum-based bulk metallic glasses // Phil. Mag. 2010. V. 90. P. 3215–3231. https://doi.org/10.1080/14786435.2010.484401
  4. Chunchu V.J., Markandeyulu G. Magnetoimpedance studies in as quenched Fe73.5Si13.5B8CuV3−xAlNbx nanocrystalline ribbons // Appl. Phys. 2013. V. 113. P. 17A321. https://doi.org/10.1063/1.4795800
  5. Maaß R., Samwer K., Arnold W., Volkert C.A. A single shear band in a metallic glass: Local core and wide soft zone // Appl. Phys. Lett. 2014. V. 105. P. 171902. https://doi.org/10.1063/1.4900791
  6. Ohta M., Yoshizawa Y. Magnetic properties of nanocrystalline Fe82.65Cu1.35Si푥B16−x alloys (x = 0–7) // Appl. Phys. Lett. 2007. V. 91. P. 062517. https://doi.org/10.1063/1.2769956
  7. Makino A., Men H., Kubota T., Yubuta K., Inoue A. New Fe-metalloids based nanocrystalline alloys with high Bs of 1.9T and excellent magnetic softness // J. Appl. Phys. 2009. V. 105. P. 07A308. https://doi.org/10.1063/1.3058624
  8. Abrosimova G., Matveev D., Pershina E., Aronin A. Effect of treatment conditions on parameters of nanocrystalline structure in Al-based alloys // Mat. Lett. 2016. V. 183. P. 131–134. https://doi.org/10.1016/j.matlet.2016.07.053
  9. Aronin A., Matveev D., Pershina E., Tkatch V., Abrosimova G. The effect of changes in Al-based amorphous phase structure on structure forming upon crystallization // J. Alloy. Compd. 2017. V. 715. P. 176–183. https://doi.org/10.1016/j.jallcom.2017.04.305
  10. Сверхбыстрая закалка жидких сплавов / Под ред. Г. Герман. М.: Металлургия, 1986. 374 с.
  11. Meng F., Tsuchiya K., Seiichiro I.I., Yokoyama Y. Reversible transition of deformation mode by structural rejuvenation and relaxation in bulk metallic glass // Appl. Phys. Lett. 2012. V. 101. P. 121914. https://doi.org/10.1063/1.4753998
  12. Boltynjuk E., Gunderov D., Ubyivovk E., Monclús M., Yang L., Molina-Aldareguia J., Tyurin A., Kilmametov A., Churakova A., Churyumov A. Enhanced strain rate sensitivity of Zr-based bulk metallic glasses subjected to high pressure torsion // J. Alloys Compd. 2018. V. 747. P. 595–602. https://doi.org/10.1016/j.jallcom.2018.03.018
  13. Gunderov D., Astanin V., Churakova A., Sitdikov V., Ubyivovk E., Islamov A., Jing Tao Wang. Influence of High-Pressure Torsion and Accumulative High-Pressure Torsion on Microstructure and Properties of Zr-Based Bulk Metallic Glass Vit105 // Metals. 2020. V. 10. P. 1433. https://doi.org/10.3390/met10111433
  14. Chen Y.M., Ohkubo T., Mukai T., Hono K. Structure of shear bands in Pd40Ni40P20 bulk metallic glass // J. Mater. Res. 2009. V. 24. P. 1–9. https://doi.org/10.1557/jmr.2009.0001
  15. Greer A.L., Cheng Y.Q., Ma E. Shear bands in metallic glasses // Mater.Sci. Eng. R Reports. 2013. V. 74. P. 71–132. https://doi.org/10.1016/j.mser.2013.04.001
  16. He J., Kaban I., Mattern N., Song K., Sun B., Zhao J., Kim D.H., Eckert J., Greer A.L. Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation // Sci. Reports. 2016. V. 6. P. 25 832. https://doi.org/10.1038/srep25832
  17. Rösner H., Peterlechner M., Kübel C., Schmidt V., Wilde G. Density changes in shear bands of a metallic glass determined by correlative analytical transmission electron microscopy // Ultramicroscopy. 2014. V. 142. P. 1–9. https://doi.org/10.1016/j.ultramic.2014.03.006
  18. Şopu D., Scudino S., Bian X.L., Gammer C., Eckert J. Atomic-scale origin of shear band multiplication in heterogeneous metallic glasses // Scripta Mater. 2020. V. 178. P. 57–61. https://doi.org/10.1016/j.scriptamat.2019.11.006
  19. Glezer A.M., Khriplivets I.A., Sundeev R.V., Louzguine-Luzgin D.V., Pogozhev Yu.S., Rogachev S.O., Bazlov A.I., Tomchuk A.A. Quantitative characteristics of shear bands formed upon deformation in bulk amorphous Zr-based alloy // Mater. Letters. 2020. V. 281. P. 128 659. https://doi.org/10.1016/j.matlet.2020.128659
  20. Liu C., Roddatis V., Kenesei P., Maaß R. Shear-band thickness and shear-band cavities in a Zr-based metallic glass // Acta Mater. 2017. V. 140. P. 206–216. https://doi.org/10.1016/j.actamat.2017.08.032
  21. Постнова Е.Ю., Абросимова Г.Е., Аронин А.С. Поверхность и структура аморфных сплавов после барической обработки // Поверхность. Рентгеновские, Синхротронныеи Нейтронные Исследования. 2021. Т. 21. № 11. С. 5–10. https://doi.org/10.31857/S1028096021110169
  22. Mironchuk B., Abrosimova G., Bozhko S., Pershina E., Aronin A. Correlation between phase transformation and surface morphology under severe plastic deformation of theAl87Ni8La5 amorphous alloy // J. Non-Crystal. Solids. 2022. V. 571. P. 121279. https://doi.org/10.1016/j.jnoncrysol.2021.121279
  23. Aronin A.S., Louzguine-Luzgin D.V. On nanovoids formation in shear bands of an amorphous Al-based alloy // Mechanics of Materials. 2017. V. 113. P. 19–23. https://doi.org/10.1016/j.mechmat.2017.07.007
  24. Lewandowski J.J., Greer A.L. Temperature rise at shear bands in metallic glasses // Nature Mater. 2006. V. 5. P. 15–18. https://doi.org/10.1038/nmat1536
  25. Csontos A.A., Shiflet G.J. Formation and chemistry of nanocrystalline phases formed during deformation in aluminum-rich metallic glasses // Nano Structured Mater. 1997. V. 9. P. 281–289. https://doi.org/10.1016/S0965-9773(97)90068-4
  26. Georgarakis K. Shear band melting and serrated flow in metallic glasses // App. Phys. Lett. 2008. V. 93. P. 031 907. https://doi.org/10.1063/1.2956666
  27. Hartley K.A., Duffy J., Hawley. R.H. Measurement of the temperature profile during shear band formation in steels deforming at high strain rates // J. Mech. Solids. 1987. V. 35. P. 283–301. https://doi.org/10.1016/0022-5096(87)90009-3
  28. Li J.G., Umemoto M., Todaka Y., Fujisaku K., Tsuchiya K. The dynamic phase transformation and formation of nanocrystalline structure in sus304 austenitic stainless steel subjected to high pressure torsion // Rev. Adv. Mater. Sci. 2008. V. 18. P. 577–582. https:// www.ipme.ru/e-journals/RAMS/no_71808/umemoto.pdf.
  29. Jiang W.H., Atzmon M. The effect of compression and tension on shear-band structure and nanocrystallization in amorphous Al90Fe5Gd5: a high-resolution transmission electron microscopy study // Acta Materialia. 2003. V. 51. P. 4095–4105. https://doi.org/10.1016/S1359-6454(03)00229-5
  30. Kim J.J., Choi Y., Suresh S., Argon A.S. Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature // Science 2002. V. 295. P. 654–657. https://doi.org/10.1126/science.1067453
  31. Schmidt V., Rösner H., Peterlechler M., Wilde G. Quantitative Measurement of Density in a Shear Band of Metallic Glass MonitoredAlongits Propagation Direction // Phys. Rev. Lett. 2015. V. 115. P. 035501. https://doi.org/10.1103/PhysRevLett.115.035501
  32. Абросимова Г.Е., Матвеев Д.В., Аронин А.С. Формирование наноструктур в гомогенной и гетерогенной аморфной фазе // УФН. 2022. Т. 192. № 3. С. 247–266. https://doi.org/10.3367/UFNr.2021.04.038974
  33. Doolittle A.K. Studies in Newtonian flow. II. The dependence of the viscosity of liquids on free-space // J. Appl. Phys. 1951. V. 22. P. 1471–1475.
  34. Haruyama O., Inoue A. Free volume kinetics during sub-structural relaxation of a bulk Pd40Ni40P20 metallic glass // Appl. Phys. Lett. 2006. V. 88. P. 131 906. https://doi.org/10.1063/1.2189833
  35. Rätzke K., Hüppe P.W., Faupel F. Transition from Single-Jump Type to Highly Cooperative Diffusion during Structural Relaxation of a Metallic Glass // Phys. Rev. Lett. 1992. V. 68. P. 2347–2349.
  36. Dmowski W., Iwashita T., Chuang C.P., Almer J., Egami T. Elastic Heterogeneity in Metallic Glasses // Phys. Rev. Lett. 2010. V. 105. P. 205502. https://doi.org/10.1103/PhysRevLett.105.205502
  37. Yavari A.R., Moulec A.L., Inoue A., Nishiyama N., Lupu N., Matsubara E., Botta W.J., Vaughan G., Michiel M.D., Kvick Å. Excess free volume in metallic glasses measured by X-ray diffraction // Acta Mater. 2005. V. 53. P. 1611–1619. https://doi.org/10.1016/j.actamat.2004.12.011
  38. Cohen M.H., Grest G.S. Liquid-glass transition, a free-volume approach // Phys. Rev. B 1979. V. 20. P. 1077.
  39. Turnbull D., Cohen M.H. Free-Volume Model of the Amorphous Phase: Glass Transition // J. Chem. Phys. 1961. V. 34. P. 120–125. https://doi.org/10.1063/1.1731549
  40. Pan J., Chen Q., Liu L., Li Y. Softening and dilatation in a single shear band // Acta Mater. 2011. V. 59. P. 5146–5158. https://doi.org/10.1016/j.actamat.2011.04.047
  41. Greer A.L. Partially or fully devitrified alloys for mechanical properties // Mat. Sci. Eng. 2001. V. 304–306. P. 68–72. https://doi.org/10.1016/S0921-5093(00)01449-0
  42. Boucharat N., Hebert R., Rösner H., Valiev R., Wilde G. Synthesis routes for controlling the microstructure in nanostructured Al88Y7Fe5 alloys // J. All. Comp. 2007. V. 434–435. P. 252–254. https://doi.org/10.1016/j.jallcom.2006.08.128
  43. Wilde G., Rösner H. Nanocrystallization in a shear band: An in situ investigation // Appl. Phys. Lett. 2011. V. 98. P. 251904. https://doi.org/10.1063/1.3602315
  44. Gunderov D., Astanin V. Influence of HPT Deformation on the Structure and Properties of Amorphous Alloys // Metals. 2020. V. 10. P. 415. https://doi.org/10.3390/met10030415
  45. Gunderov D.V., Churakova A.A., Astanin V.V., Asfandiyarov R.N., Hahn H., Valiev R.Z. Accumulative HPT of Zr-based bulk metallic glasses // Mater. Lett. 2020. V. 261. P. 127000. https://doi.org/10.1016/j.matlet.2019.127000
  46. Masumoto T., Maddin R. Structural stability and mechanical properties of amorphous metals // Mater. Sci. Eng. 1975. V. 19. P. 1–24. https://doi.org/10.1016/0025-5416(75)90002-6
  47. Wang X.D., Bednarcik J., Saksi K., Franz H., Cao Q.P., Jiang A.Z. Tensile behavior of bulk metallic glasses by in situ x-ray diffraction // Appl. Phys. Lett. 2007. V. 91. P. 081913. https://doi.org/10.1063/1.2773945
  48. Stoica M., Das J., Bednarcik J., Franz H., Mattern N., Wang W.H., Eckert J. Strain distribution in Zr64.13Cu15.75Ni10.12Al10 bulk metallic glass investigated by in situ tensile tests under synchrotron radiation // J. Appl. Phys. 2008. V. 104. P. 013522. https://doi.org/10.1063/1.2952034
  49. Wang X.D., Bednarcik J., Franz H., Lou H.B., He Z.H., Cao Q.P., Jiang J.A. Local strain behavior of bulk metallic glasses under tension studied by in situ x-ray diffraction // Appl. Phys. Lett. 2009. V. 94. P. 011911. https://doi.org/10.1063/1.3064136
  50. Абросимова Г.Е., Аронин А.С., Афоникова Н.С., Кобелев Н.П. Влияние деформации на изменение структуры аморфной фазы Pd40Ni40P20 // ФТТ. 2010. Т. 52. № 9. С. 1763–1768. https://doi.org/10.1134/S1063783410090179
  51. Hebert R.J., Boucharat N., Perepezko J.H., Rösner H., Wilde G. Calorimetric and microstructural analysis of deformation induced crystallization reactions in amorphous Al88Y7Fe5 alloy // J. Alloys Compd. 2007. V. 434. P. 18–21. https://doi.org/10.1016/j.jallcom.2006.08.134
  52. Abrosimova G., Chirkova V., Pershina E., Volkov N., Sholin I. Aronin A. The Effect of Free Volume on the Crystallization of Al87Ni8Gd5 Amorphous Alloy // Metals. 2022. V. 12. P. 332. https://doi.org/10.3390/met12020332
  53. Valiev R.Z., Islamgaliev R.K., Alexandrov I.V. Bulk Nanostructured Materials from Severe Plastic Deformation // Prog. Mater. Sci. 2000. V. 45. P. 103–189. https://doi.org/10.1016/S0079-6425(99)00007-9
  54. Degtyarev M.V., Chashchukhina T.I., Voronova L.M., Patselov A.M., Pilyugin V.P. Influence of the relaxation processes on the structure formation in pure metals and alloys under high-pressure torsion // Acta Mater. 2007. V. 55. P. 6039–6050. https://doi.org/10.1016/j.actamat.2007.04.017
  55. Zhilyaev A.P., Langdon T.G. Using high-pressure torsion for metal processing: Fundamentals and applications // Progress in Materials Science. 2008. V. 53. P. 893–979. https://doi.org/10.1016/j.pmatsci.2008.03.002
  56. Chashchukhina T.I., Degtyarev M.V., Voronova L.M. Effect of pressure on the evolution of copper microstructure upon large plastic deformation // Physics of metals and metallography. 2010. V. 109. P. 201–209. https://doi.org/10.1134/S0031918X10020122
  57. Скрышевский А.Ф. Структурный анализ жидкостей и аморфных тел. М.: Высшая школа, 1980. 328 с.
  58. Gunderov D.V., Boltynjuk E.V., Sitdikov V.D., Abrosimova G.E., Churakova A.A., Kilmametov A.R., Valiev R.Z. Free volume measurement of severely deformed Zr62Cu22Al10Fe5Dy1 bulk metallic glass // IOP Conf. Series: Journal of Physics: Conf. Series. 2018. V. 1134. P. 012 010. https://doi.org/10.1088/1742-6596/1134/1/012010
  59. Абросимова Г. Эволюция структуры аморфных сплавов // УФН. 2011. Т. 181. № 12. С. 1265. https://doi.org/10.3367/UFNr.0181.201112b.1265
  60. Abrosimova G., Aronin A., Budchenko A. Amorphous phase decomposition in Al–Ni–RE system alloys // Mater. Letters. 2015. V. 139. P. 194–196. https://doi.org/10.1016/j.matlet.2014.10.076
  61. Abrosimova G., Aronin A. On decomposition of amorphous phasein metallic glasses // Rev. Adv. Mater. Sci. 2017. V. 50. № 1–2. P. 55–61. http://www.ipme.ru/e-journals/RAMS/no_15017/07_15017_abrosimova.pdf
  62. Abrosimova G., Gunderov D., Postnova E., Aronin A. Changes in the Structure of Amorphous Alloys under Deformation by High-Pressure Torsion and Multiple Rolling // Materials. 2023. V. 16. P. 1321. https://doi.org/10.3390/ma16031321
  63. Бойчишин Д., Ковбуз М., Герцик О., Носенко В., Котур Б. Влияние структурирования аморфных металлических сплавов Al87Y5–xGdxNi8–y (x = 0, 1, 5; y = 0, 4) на их механические свойства // ФТТ. 2013. Т. 55. № 2. С. 209–212.
  64. Microstructure and properties of Materials / Ed. J.C.M. Li. World Scientific. Singapore, 2000. 439 p.
  65. Lewandowski J.J., Wang W.H., Greer A.L. Intrinsic plasticity or brittleness of metallic glasses // Phil. Mag. Letters. 2005. V. 85. P. 77–87. https://doi.org/10.1080/09500830500080474
  66. Глезер А.М., Шурыгина Н.А. Аморфно-нанокристаллические сплавы. М., Физматлит, 2013. 452 с.
  67. Gu X.J., Poon S.J., Shiflet G.J., Widom M. Ductility improvement of amorphous steels: Roles of shear modulus and electronic structure // Acta Materialia. 2008. V. 56. P. 88–94. https://doi.org/10.1016/j.actamat.2007.09.011
  68. Судзуки К., Фудзимори Х., Хасимото Л. Аморфные металлы. М.: Металлургия, 1987. 328 с.
  69. Zhang Z., Keppens V., Liaw P.K., Yokoyama Y., Inoue A. Elastic properties of Zr-based bulk metallic glasses studied by resonant ultrasound spectroscopy // J. Mater. Res. 2007. V. 22. P. 364–367. https://doi.org/10.1557/jmr.2007.0040
  70. Kassner M.E., Smith K., Eliasson V. Creep in amorphous metals // J. Mater. Res. Tech. 2015. V. 4. P. 100–107. https://doi.org/10.1016/j.jmrt.2014.11.003
  71. Физические величины. Справочник / Под ред. Григорьева И.С., Мейлихова Е.З. М.: Энергоатомиздат, 1991. 1232 с.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (38KB)
3.

下载 (41KB)
4.

下载 (52KB)
5.

下载 (61KB)
6.

下载 (60KB)
7.

下载 (53KB)
8.

下载 (1MB)
9.

下载 (991KB)
10.

下载 (1008KB)
11.

下载 (961KB)
12.

下载 (52KB)

版权所有 © Г.Е. Абросимова, В.В. Астанин, Н.А. Волков, Д.В. Гундеров, Е.Ю. Постнова, А.С. Аронин, 2023

##common.cookie##