The Submonolayer Structure of Ni(111)–(√3 × √3)R30–Pb: Atomic Relaxation and Vibrational Properties

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The results of a theoretical study of the structural and dynamical parameters of surface phases (adsorption phase and surface alloy phase) formed upon the adsorption of 0.33 Pb monolayer on the Ni(111) plane surface are discussed. Calculations were performed using interatomic potentials obtained within the framework of the embedded atom method. The stability of the surface phases was analyzed on the basis of data on the equilibrium atomic configuration, phonon spectra, local density of phonon states, and polarization of localized vibration modes. It is shown that the Pb–Ni surface alloy has the highest dynamic stability among the two possible surface phases.

Sobre autores

S. Borisova

Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences

Email: svbor@ispms.ru
Tomsk, 634055 Russia

G. Rusina

Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: svbor@ispms.ru
Tomsk, 634055 Russia

Bibliografia

  1. Woodruff D.P., Braun D., Quinn P.D., Noakes T.C.Q., Bailey P. Structure determination of surface adsorption and surface alloy phases using medium-energy ion scattering // Nucl. Instr. And Meth. In Phys. Res. B. 2001. V. 183. P. 128–139.
  2. Krupski A., Nowicki M. LEED investigation of the Pb and Sb ultrathin layers deposited on the Ni(111) face at T = 150–900 K // Surf. Rev. Letters. 2003. V. 10. № 6. P. 843–848.
  3. Quinn P.D., Bittencourt C., Woodruff D.P. Tensor LEED analysis of the Ni(111)–(√3 × √3)R30°–Pb surface // Phys. Rev. B. 2002. V. 65. P. 233404–233408.
  4. Li D.F., Xiao H.Y., Zu X.T., Dong H.N. First-principles study of the Ni(111)–(√3 × √3)R30°–Pb surface // Physica B. 2007. V. 392. P. 217–220.
  5. Chen J.G., Menning C.A, Zellner M.B. Monolayer bimetallic surfaces: Experimental and theoretical studies of trends in electronic and chemical properties // Surf. Sci. Reports. 2008. V. 63. P. 201–254.
  6. Nur M., Yamaguchi N. and Ishii F. Simple Model for Corrugation in Surface Alloys Based on First-Principles Calculations // Materials. 2020. V. 13. P. 4444–4453.
  7. Rusina G.G., Borisova S.D., Eremeev S.V., Sklyadneva I.Yu., Chulkov E.V., Benedek G., Toennies J.P. Surface Dynamic of the Wetting Layers and Ultrathin Films on a Dynamic Substrate: (0.5–4) ML Pb/Cu (111) // J. Phys. Chem. C. 2016. V. 120. P. 22304–22317.
  8. Rusina G.G., Borisova S.D., Chulkov E.V. Atomic structure and phonons of a Pb ultrathin film on the Al(100) surface // JETP Lett. 2014. V. 100. P. 237–241.
  9. Абрикосов A.A. Основы теории металлов. М.: Наука, 1987. 520 с.
  10. Lin Y.-H., Hsu C.-H., Jang I., Chen C.-J., Chiu P.-M., Lin D.-S, Wu C.-T., Chuang F.-C., Chang P.-Y., and Hsu P.-J. Proximity-Effect-Induced Anisotropic Superconductivity in a Monolayer Ni–Pb Binary Alloy // CS Appl. Mater. Interfaces. 2022. V. 14. P. 23 990–23 997.
  11. Sklyadneva I.Y., Benedek G., Chulkov E.V., Echenique P.M., Heid R., Bohnen K.-P., Toennies J.P. Mode-Selected ElectronPhonon Coupling in Superconducting Pb Nanofilms Determined from He Atom Scattering // Phys. Rev. Lett. 2011. V. 107. P. 095 502–095 506.
  12. Seo M., Fushimi K., Aoki Y., Habazaki H., Inaba M., Yokomizo M., Hayakawa T., Nakayama T. In situ X-ray absorption spectroscopy for identification of lead species adsorbed on a nickel surface in acidic perchlorate solution // J. Electr. Chem. 2012. V. 671. P. 7–15.
  13. Otero R., V’azquez de Parga A.L. and Miranda R. Observation of preferred heights in Pb nanoislands: A quantum size effect // Phys. Rev. B. 2002. V. 66. P. 115 401–115 407.
  14. Daw M.S., Foiles S.M., Baskes M.I. EAM: a review of theory and application // Mater. Sci. Rep. 1993. V. 9. P. 251–310.
  15. Борисова С.Д., Русина Г.Г. Кластеры Pb на поверхности Al (001): равновесная структура и колебательные свойства // ФММ. 2021. Т. 122 № 11. С. 1103–1110.
  16. Борисова С.Д., Русина Г.Г. Атомная структура и колебательные свойства поверхности Cu(111)–(√3 × √3)R30°–Cr // ФММ. 2020. Т. 121. С. 1123–1128.
  17. Levesque D., Verlet L. Molecular Dynamic and Time Reversibility // J. Stat. Phys. 1993. V. 72. №3/4. P. 519–537.
  18. Johnson R.A. Alloy models with the embedded-atom method // Phys. Rev. B. 1989. V. 39. P. 12554–12559.
  19. Bohnen K.-P., Ho K.M. Structure and dynamic at metal surfaces // Surf. Sci. Rep. 1993. V. 19. P. 99–120.
  20. Ackland G.L., Tichy G., Vitek V., Finnis M.W. Simple-N-body potentials for noble metals and nickel // Phil. Mag. A. 1985. V. 56. P. 735–756.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (2MB)
3.

Baixar (1MB)

Declaração de direitos autorais © С.Д. Борисова, Г.Г. Русина, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies