NOVEL FUNCTIONAL MATERIALS BASED ON AMORPHOUS ALLOYS OF Fe–Сo–Сr SYSTEM

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The work is devoted to the study of the possibility of obtaining hard magnetic materials during the crystalli-zation of amorphous alloys of the Fe–Co–Cr–B–Si system. The influence of boron content in alloys on their glass-forming ability was analyzed. The structure and phase transformations in alloys during heating were ana-lyzed using X-ray diffraction and transmission electron microscopy. Influence of the phase composition on the magnetic properties of the alloys has been established. It is shown that the formation of a nanosized eutectic structure [α + (Fe, Cr)3B] during the crystallization of an amorphous matrix is promising for development of new hard magnetic materials.

作者简介

E. Zanaeva

MISiS National University of Science and Technology, Moscow

Email: zanaeva@misis.ru
Moscow, 119049 Russia

A. Bazlov

MISiS National University of Science and Technology; St Petersburg University

Email: zanaeva@misis.ru
Moscow, 119049 Russia; St Petersburg, 199034 Russia

E. Ubyivovk

MISiS National University of Science and Technology

Email: zanaeva@misis.ru
Moscow, 119049 Russia

D. Milkova

MISiS National University of Science and Technology, Moscow

编辑信件的主要联系方式.
Email: zanaeva@misis.ru
Moscow, 119049 Russia

参考

  1. Lucarini S., Hossain M., Garcia-Gonzalez D. Recent advances in hard-magnetic soft composites: Synthesis, characterisation, computational modelling, and applications // Compos. Struct. 2022. V. 279. P. 114800.
  2. Coey J.M.D. Permanent magnet applications // J. Magn. Magn. Mater. 2002. V. 248. № 3. P. 441–456.
  3. Coey J.M.D. Perspective and Prospects for Rare Earth Permanent Magnets // Engineering. 2020. V. 6, № 2. P. 119–131.
  4. Wallace W.E. Rare Earth-Transition metal permanent magnet materials // Prog. Solid State Chem. 1985. V. 16. № 3. P. 127–162.
  5. Kumari A., Kumar Sahu S. A comprehensive review on recycling of critical raw materials from spent neodymium iron boron (NdFeB) magnet // Sep. Purif. Technol. 2023. P. 123527.
  6. Kurima K., Satoshi H. Chapter 208 Permanent magnets. 2001. P. 515–565.
  7. Tan X.H., Xu H., Bai Q., Zhao W.J., Dong Y.D. Magnetic properties of Fe–Co–Nd–Y–B magnet prepared by suction casting // J. Non. Cryst. Solids. 2007. V. 353. № 4. P. 410–412.
  8. Li H.X., Lu Z.C., Wang S.L., Wu Y., Lu Z.P. Fe-based bulk metallic glasses: Glass formation, fabrication, properties and applications // Prog. Mater. Sci. 2019. V. 103. № January. P. 235–318.
  9. Ushakova O.A., Dinislamova E.H., Gorshenkov M.V., Zhukov D.G. Structure and magnetic properties of Fe–Cr–Co nanocrystalline alloys for permanent magnets // J. Alloys Compd. 2014. V. 586. P. S291–S293.
  10. Mohapatra J., Xing M., Elkins J., Liu J. P. Hard and semi-hard magnetic materials based on cobalt and cobalt alloys // J. Alloys Compd. 2020. V. 824. P. 153874.
  11. Mukhamedov B.O., Ponomareva A.V., Abrikosov I.A. Spinodal decomposition in ternary Fe–Cr–Co system // J. Alloys Compd. 2017. V. 695. P. 250–256.
  12. Iwama Y., Takeuchi M. Spinodal Decomposition in Alnico 8 Magnet Alloy // Trans. Japan Inst. Met. 1974. V. 15. № 5. P. 371–377.
  13. Herzer G. Modern soft magnets: Amorphous and nanocrystalline materials // Acta Mater. Acta Materialia Inc. 2013. V. 61. № 3. P. 718–734.
  14. Chin T.-S., Lin C.Y., Lee M.C., Huang R.T., Huang S.M. Bulk nano-crystalline alloys // Mater. Today. 2009. V. 12. № 1–2. P. 34–39.
  15. Abrosimova G.E., Aronin A.S. The fine structure of FCC nanocrystals in Al-and Ni-based alloys // Phys. Solid State. 2002. V. 44. № 6. P. 1003–1007.
  16. Abrosimova G.E., Aronin A.S., Kir’janov Y.V., Gloriant T.F., Greer A.L. Nanostructure and microhardness of AL86NI11YB3 nanocrystalline alloy // Nanostructured Mater. 1999. V. 12. № 5–8. P. 617–620.
  17. Noskova N.I., Shulika V.V., Potapov A.P. Magnetic properties and microstructure of nanocrystalline soft magnetic Fe73.5 – xCoxCu1Nb3Si13.5B9 alloys // Phys. Met. Metallogr. 2006. V. 102. № 5. P. 506–511.
  18. Faupel F., Frank W, Macht M.-P., Mehrer H., Naundorf V., Rätzke K., Schober H.R., Sharma S.K., Teichler H. Diffusion in metallic glasses and supercooled melts // Rev. Mod. Phys. 2003. V. 75. № 1. P. 237–280.
  19. Mushnikov N.V., Potapov A.P., Shishkin D.A., Protasov A.V., Golovnya O.A., Shchegoleva N.N., Gaviko V.S., Shunyaev K.Y., Bykov V.A., Starodubtsev Y.N., Belozerov V.Y. Magnetic properties and structure of nanocrystalline FINEMET alloys with various iron contents // Phys. Met. Metallogr. 2015. V. 116. № 7. P. 663–670.
  20. Kataev V.A., Starodubtsev Y.N., Mikhalitsyna E.A., Belozerov V.Y., Tsyngalov R.V. Magnetic properties and induced anisotropy of nanocrystalline Fe72.5 ‒ xNixCu1.1Nb1.9Mo1.5Si14.3B8.7 alloys // Phys. Met. Metal. 2017. V. 118. № 6. P. 558–563.
  21. Hono K., Ping D.H., Ohnuma M., Onodera H. Cu clustering and Si partitioning in the early crystallization stage of an Fe73.5Si13.5B9Nb3Cu1 amorphous alloy // Acta Mater. 1999. V. 47. № 3. P. 997–1006.
  22. Suryanarayana C., Inoue A. Iron-based bulk metallic glasses // Int. Mater. Rev. 2013. V. 58. № 3. P. 131–166.
  23. Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys // Acta Mater. 2000. V. 48. № 1. P. 279–306.
  24. Pawlik P. Glass formability of Fe–Co–Pr–Dy–Zr–B alloys and magnetic properties following devitrification // Scr. Mater. 2003. V. 49. № 8. P. 755–760.
  25. Li J.W., He A.N., Shen B.L. Effect of Tb addition on the thermal stability, glass-forming ability and magnetic properties of Fe–B–Si–Nb bulk metallic glass // J. Alloys Compd. 2014. V. 586. P. S46–S49.
  26. Zhang W., Inoue A. Bulk nanocomposite permanent magnets produced by crystallization of (Fe,Co)–(Nd,Dy)–B bulk glassy alloy // Appl. Phys. Lett. 2002. V. 80. № 9. P. 1610–1612.
  27. Zhang W.Y., Stoica M., Eckert J., Yu P., Jiang J.Z. Preparation of bulk Nd2Fe14B/Fe3B nanocomposite magnets with high rare earth content // Intermetallics. 2008. V. 16. № 3. P. 341–344.
  28. Zhukov D.G., Shubakov V.S., Zhukova E.K., Gorshenkov M.V. Phase transformation in rapidly quenched Fe–Cr–Co–Mo–Ti–Si–B alloys // IOP Conf. Ser. Mater. Sci. Eng. 2018. V. 327. P. 032062.
  29. Sun H., Wang Y. Glass Forming Ability, Thermal Stability, and Magnetic Properties of FeCoNiBSi Alloys with Different B Contents // Adv. Mater. Sci. Eng. 2018. V. 2018. P. 1–6.
  30. Wang F., Inoue A., Kong F.L., Han Y., Zhu S.L., Shalaan E., Al-Marouki F. Formation, thermal stability and mechanical properties of high entropy (Fe, Co, Ni, Cr, Mo)-B amorphous alloys // J. Alloys Compd. 2018. V. 732. P. 637–645.
  31. Zhao X., Li L., Bao K., Zhu P., Tao Q., Ma S., Liu B., Ge Y., Li D., Cui T. Synthesis and characterization of a strong ferromagnetic and high hardness intermetallic compound Fe2B // Phys. Chem. Chem. Phys. 2020. V. 22. № 46. P. 27425–27432.
  32. Pal S.K., Diop L.V.B., Skokov K.P., Gutfleisch O. Magnetic properties of Mo-stabilized bulk Fe3B magnet // Scr. Mater. 2017. V. 130. P. 234–237.
  33. Han X., Sun J., Liu T., Wang H., Zhang Y., Cui C. Effects of magnetic field and annealing on the structure and magnetic properties of Alnico ribbons // J. Alloys Compd. 2019. V. 785. P. 715–724.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (342KB)
3.

下载 (342KB)
4.

下载 (2MB)

版权所有 © Э.Н. Занаева, А.И. Базлов, Е.В. Убыйвовк, Д.А. Милькова, 2023

##common.cookie##