Well-Posed Solvability of the Neumann Problem for a Generalized Mangeron Equation with Nonsmooth Coefficients
- Авторы: Mamedov I.G.1, Mardanov M.D.2, Melikov T.K.1,2, Bandaliev R.A.2
-
Учреждения:
- Institute of Control Systems
- Institute of Mathematics and Mechanics
- Выпуск: Том 55, № 10 (2019)
- Страницы: 1362-1372
- Раздел: Partial Differential Equations
- URL: https://journals.rcsi.science/0012-2661/article/view/155178
- DOI: https://doi.org/10.1134/S0012266119100112
- ID: 155178
Цитировать
Аннотация
For a fourth-order generalized Mangeron equation with nonsmooth coefficients defined on a rectangular domain, we consider the Neumann problem with nonclassical conditions that do not require matching conditions. We justify the equivalence of these conditions to classical boundary conditions for the case in which the solution to the problem is sought in an isotropic Sobolev space. The problem is solved by reduction to a system of integral equations whose well-posed solvability is established based on the method of integral representations. The well-posed solvability of the Neumann problem for the generalized Mangeron equation is proved by the method of operator equations.
Об авторах
I. Mamedov
Institute of Control Systems
Автор, ответственный за переписку.
Email: ilgar-mamedov-1971@mail.ru
Азербайджан, Baku, AZ1141
M. Mardanov
Institute of Mathematics and Mechanics
Автор, ответственный за переписку.
Email: misirmardanov@yahoo.com
Азербайджан, Baku, AZ1141
T. Melikov
Institute of Control Systems; Institute of Mathematics and Mechanics
Автор, ответственный за переписку.
Email: t.melik@rambler.ru
Азербайджан, Baku, AZ1141; Baku, AZ1141
R. Bandaliev
Institute of Mathematics and Mechanics
Автор, ответственный за переписку.
Email: bandaliyevr@gmail.com
Азербайджан, Baku, AZ1141
Дополнительные файлы
