Well-Posed Solvability of the Neumann Problem for a Generalized Mangeron Equation with Nonsmooth Coefficients


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

For a fourth-order generalized Mangeron equation with nonsmooth coefficients defined on a rectangular domain, we consider the Neumann problem with nonclassical conditions that do not require matching conditions. We justify the equivalence of these conditions to classical boundary conditions for the case in which the solution to the problem is sought in an isotropic Sobolev space. The problem is solved by reduction to a system of integral equations whose well-posed solvability is established based on the method of integral representations. The well-posed solvability of the Neumann problem for the generalized Mangeron equation is proved by the method of operator equations.

作者简介

I. Mamedov

Institute of Control Systems

编辑信件的主要联系方式.
Email: ilgar-mamedov-1971@mail.ru
阿塞拜疆, Baku, AZ1141

M. Mardanov

Institute of Mathematics and Mechanics

编辑信件的主要联系方式.
Email: misirmardanov@yahoo.com
阿塞拜疆, Baku, AZ1141

T. Melikov

Institute of Control Systems; Institute of Mathematics and Mechanics

编辑信件的主要联系方式.
Email: t.melik@rambler.ru
阿塞拜疆, Baku, AZ1141; Baku, AZ1141

R. Bandaliev

Institute of Mathematics and Mechanics

编辑信件的主要联系方式.
Email: bandaliyevr@gmail.com
阿塞拜疆, Baku, AZ1141

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2019