Passage to the limit in a singularly perturbed partial integro-differential system


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We study an initial–boundary value problem for a singularly perturbed system of partial integro-differential equations. We prove a theorem on the passage to the limit. The result is used to decrease the dimension of a virus evolution model. We construct an asymptotic solution by the Tikhonov–Vasil’eva boundary function method. The analytic results obtained are compared with a numerical study of the system.

About the authors

A. A. Archibasov

Samara State Aerospace University

Author for correspondence.
Email: aarchibasov@gmail.com
Russian Federation, Samara

A. Korobeinikov

Centre de Recerca Matematica

Email: aarchibasov@gmail.com
Spain, Barcelona

V. A. Sobolev

Samara State Aerospace University

Email: aarchibasov@gmail.com
Russian Federation, Samara

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Pleiades Publishing, Ltd.