Passage to the limit in a singularly perturbed partial integro-differential system
- Authors: Archibasov A.A.1, Korobeinikov A.2, Sobolev V.A.1
-
Affiliations:
- Samara State Aerospace University
- Centre de Recerca Matematica
- Issue: Vol 52, No 9 (2016)
- Pages: 1115-1122
- Section: Integral Equations
- URL: https://journals.rcsi.science/0012-2661/article/view/154021
- DOI: https://doi.org/10.1134/S0012266116090020
- ID: 154021
Cite item
Abstract
We study an initial–boundary value problem for a singularly perturbed system of partial integro-differential equations. We prove a theorem on the passage to the limit. The result is used to decrease the dimension of a virus evolution model. We construct an asymptotic solution by the Tikhonov–Vasil’eva boundary function method. The analytic results obtained are compared with a numerical study of the system.
About the authors
A. A. Archibasov
Samara State Aerospace University
Author for correspondence.
Email: aarchibasov@gmail.com
Russian Federation, Samara
A. Korobeinikov
Centre de Recerca Matematica
Email: aarchibasov@gmail.com
Spain, Barcelona
V. A. Sobolev
Samara State Aerospace University
Email: aarchibasov@gmail.com
Russian Federation, Samara
Supplementary files
