ЗНАЧЕНИЕ СОГЛАСОВАННОСТИ ПРИЗНАКОВ КСИЛЕМЫ СТВОЛА И ПАРАМЕТРОВ ГАЗООБМЕНА ЛИСТА ПРИ ФОРМИРОВАНИИ АДАПТАЦИИ У НЕКОТОРЫХ БОРЕАЛЬНЫХ ВИДОВ В КАРЕЛИИ

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Оценка устойчивости лесных сообществ и отдельных видов к внешним воздействиям требует проведения исследований возможных ответных реакций видов, сообществ и экосистем в разных регионах на прогнозируемые изменения природной среды и климата. Целью исследования было оценить изменчивость анатомических и гидравлических характеристик ксилемы и их согласованность с показателями СО22О-газообмена у голосеменного и покрытосеменных древесных растений в ходе естественного лесовосстановления на вырубке сосняка черничного в условиях Европейского Севера. Для этого провели анализ влияния фитоценотических условий и климатических факторов на структурно-функциональные характеристики подроста сосны обыкновенной (Pinus sylvestris L.), березы повислой (Betula pendula Roth) и осины (Populus tremula L.) на сплошной вырубке и под пологом сосняка черничного в течение четырех вегетационных периодов в условиях среднетаежной подзоны Карелии. Выявлена преимущественно схожая направленность реакций анатомических и гидравлических характеристик ксилемы и показателей СО22О-газообмена листа разных видов на изменение фитоценотических условий и климатических факторов. На вырубке как у сосны, так и у листопадных видов отмечены максимальные значения гидравлического диаметра трахеид и сосудов, потенциальной гидравлической проводимости ксилемы и, напротив, минимальные значения удельной плотности трахеид и сосудов. В межгодовой динамике климатических факторов у всех видов выявлена максимальная изменчивость годичных приростов по сравнению с большей консервативностью других характеристик ксилемы. Вместе с тем показаны межвидовые особенности согласованности гидравлических характеристик ксилемы, устьичной проводимости, интенсивности фотосинтеза и транспирации и их изменчивость у систематически разных видов, которые указывают на разные стратегии гидравлического поведения (isohydric/anisohydric) у березы, осины и сосны. Прогнозируемое увеличение повторяемости периодов сильной жары и засухи в высоких широтах усилит конкурентоспособность сосны и осины, формирующих более эффективную и безопасную гидравлическую структуру относительно березы, посредством роста СО2-газообмена и продуктивности в засушливых условиях.

About the authors

V. B. Pridacha

Forest Research Institute, Karelian Research Centre of RAS

Author for correspondence.
Email: pridacha@krc.karelia.ru
Russia, 185910, Petrozavodsk, Pushkinskaya Str., 11

T. V. Tarelkina

Forest Research Institute, Karelian Research Centre of RAS

Email: pridacha@krc.karelia.ru
Russia, 185910, Petrozavodsk, Pushkinskaya Str., 11

Ya. A. Neronova

Forest Research Institute, Karelian Research Centre of RAS

Email: pridacha@krc.karelia.ru
Russia, 185910, Petrozavodsk, Pushkinskaya Str., 11

N. V. Tumanik

Forest Research Institute, Karelian Research Centre of RAS

Email: pridacha@krc.karelia.ru
Russia, 185910, Petrozavodsk, Pushkinskaya Str., 11

References

  1. Anderegg W.R.L. 2015. Spatial and temporal variation in plant hydraulic traits and their relevance for climate change impacts on vegetation. – New Phytol. 205: 1008–1014. https://doi.org/10.1111/nph.12907
  2. Anderegg W.R.L., Anderegg L.D.L., Kerr K.L., Trugman A.T. 2019. Widespread drought-induced tree mortality at dry range edges indicates that climate stress exceeds species’ compensating mechanisms. – Glob. Change Biol. 25: 3793–3802. https://doi.org/10.1111/gcb.14771
  3. Antonova G.F., Stasova V.V. 1997. Effects of environmental factors on wood formation in larch (Larix sibirica Ldb.) stems. – Trees. 11 (8): 462–468.
  4. Arzac A., Babushkina E.A., Fonti P., Slobodchikova V., Sviderskaya I.V., Vaganov E.A. 2018. Evidences of wider latewood in Pinus sylvestris from a forest-steppe of Southern Siberia. – Dendrochronologia. 49: 1–8. https://doi.org/10.1016/j.dendro.2018.02.007
  5. Babushkina E.A., Belokopytova L.V., Zhirnova D.F., Vaganov E.A. 2019. Siberian spruce tree ring anatomy: imprint of development processes and their high-temporal environmental regulation. – Dendrochronologia. 53: 114–124. https://doi.org/10.1016/j.dendro.2018.12.003
  6. Benson M.C., Miniat C.F., Oishi A., Denham S.O., Domec J.C., Johnson D.M., Missik J.E., Phillips R.P., Wood J.D., Novick K.A. 2022. The xylem of Anisohydric Quercus alba L. is more vulnerable to embolism than isohydric codominants. – Plant Cell Environ. 45: 329– 346. https://doi.org/10.1111/pce.14244
  7. Bonan G.B. 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. – Science 320: 1444–1449. https://doi.org/10.1126/science.1155121
  8. Bouche P.S., Larter M., Domec J.C., Burlett R., Gasson P., Jansen S., Delzon S. 2014. A broad survey of hydraulic and mechanical safety in the xylem of conifers. – J. Exp. Bot. 65: 4419–4431. https://doi.org/10.1093/jxb/eru218
  9. Brodribb T.J., Cochard H. 2009. Hydraulic failure defines the recovery and point of death in water-stressed conifers. – Plant Physiol. 149: 575–584. https://doi.org/10.1104/pp.108.129783
  10. Brodribb T.J., McAdam S.A.M., Carins Murphy M.R. 2017. Xylem and stomata, coordinated through time and space. – Plant Cell Environ. 40: 872–880. https://doi.org/10.1111/pce.12817
  11. Buckley T.N. 2019. How do stomata respond to water status? – New Phytol. 224: 21–36. https://doi.org/10.1111/nph.15899
  12. Bussotti F., Pollastrini M., Holland V., Brüggemann W. 2015. Functional traits and adaptive capacity of European forests to climate change. – Environ. Exp. Bot. 111: 91–113. https://doi.org/10.1016/j.envexpbot.2014.11.006
  13. Chen Y.J., Maenpuen P., Zhang Y.J., Barai K., Katabuchi M., Gao H., Kaewkamol S., Tao L.B., Zhang J.L. 2021. Quantifying vulnerability to embolism in tropical trees and lianas using five methods: can discrepancies be explained by xylem structural traits? – New Phytol. 229: 805–819. https://doi.org/10.1111/nph.16927
  14. Chen Z., Zhu S., Zhang Y., Luan J., Li S., Sun P., Wan X., Liu S. 2020. Tradeoff between storage capacity and embolism resistance in the xylem of temperate broadleaf tree species. – Tree Physiol. 40: 1029–1042. https://doi.org/10.1093/treephys/tpaa046
  15. Choat B., Cobb A.R., Jansen S. 2008. Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function. – New Phytol. 177: 608–626. https://doi.org/10.1111/j.1469-8137.2007.02317.x
  16. Choat B., Jansen S., Brodribb T.J., Cochard H., Bhaskar R., Bucci S.J., Delzon S., Feild T.S., Gleason S., Jacobson A.L., Lens F., Maherali H., Martinez-Vilalta J., Mayr S., Mencuccini M., Mitchell P.J., Nardini A., Pittermann J., Pratt R.B., Sperry J.S., Westoby M., Wright I.J., Zanne A. 2012. Global convergence in the vulnerability of forests to drought. – Nature. 491: 752–755. https://doi.org/10.1038/nature11688
  17. Deslauriers A., Giovannelli A., Rossi S., Castro G., Fragnelli G., Traversi L. 2009. Intra-annual cambial activity and carbon availability in stem of poplar. – Tree Physiol. 29: 1223–1235. https://doi.org/10.1093/treephys/tpp061
  18. FAO. 2020. Global Forest Resources Assessment 2020 – Key findings. Rome. 16 p. https://doi.org/10.4060/ca8753en
  19. Fonti P., von Arx G., García-González I., Eilmann B., Sass-Klaassen U., Gärtner H., Eckstein D. 2010. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. – New Phytol. 185 (1): 42–53. https://doi.org/10.1111/j.1469-8137.2009.03030.x
  20. Fritts H.C. 1976. Tree rings and climate. London. 567 p.
  21. Gauthey A., Peters J.M.R., Carins-Murphy M.R., Rodriguez-Dominguez C.M., Li X., Delzon S., King A., López R., Medlyn B.E., Tissue D.T., Brodribb T.J., Choat B. 2020. Visual and hydraulic techniques produce similar estimates of cavitation resistance in woody species. – New Phytol. 228: 884–897. https://doi.org/10.1111/nph.16746
  22. Gleason S.M., Westoby M., Jansen S., Choat B., Hacke U.G., Pratt R.B., Bhaskar R., Brodribb T.J., Bucci S.J., Cao K.F., Cochard H., Delzon S., Domec J.C., Fan Z.X., Feild T.S., Jacobsen A.L., Johnson D.M., Lens F., Maherali H., Martínez-Vilalta J., Mayr S., McCulloh K.A., Mencuccini M., Mitchell P.J., Morris H., Nardini A., Pittermann J., Plavcová L., Schreiber S.G., Sperry J.S., Wright I.J., Zanne A.E. 2016. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. – New Phytol. 209: 123–136. https://doi.org/10.1111/nph.13646
  23. Groisman P., Shugart H., Kicklighter D., Henebry G., Tchebakova N., Maksyutov S., Monier E., Gutman G., Gulev S., Qi J., Prishchepov A., Kukavskaya E., Porfiriev B., Shiklomanov A., Loboda T., Shiklomanov N., Nghiem S., Bergen K., Albrechtova J., Chen J., Shahgedanova M., Shvidenko A., Speranskaya N., Soja A., de Beurs K., Bulygina O., McCarty J., Zhuang Q., Zolina O. 2017. Northern Eurasia Future Initiative (NEFI): facing the challenges and pathways of global change in the twenty-first century. – Prog. Earth Planet. Sci. 4: 41. https://doi.org/10.1186/s40645-017-0154-5
  24. Gromtsev A.N. (ed.). 2003. Biotic diversity of Karelia: conditions of formation, communities and species. Petrozavodsk. 244 p. (In Russ. and Eng.)
  25. Hacke U.G. (ed.). 2015. Functional and Ecological Xylem Anatomy. Springer, Cham. 281 p. https://doi.org/10.1007/978-3-319-15783-2
  26. Hacke U.G., Sperry J.S. 2001. Functional and ecological xylem anatomy. – Perspect. Plant Ecol. Evol. Syst. 4 (2): 97–115.
  27. Hacke U.G., Spicer R., Schreiber S.G., Plavcová L. 2017. An ecophysiological and developmental perspective on variation in vessel diameter. – Plant Cell Environ. 40: 831–45. https://doi.org/10.1111/pce.12777
  28. Hochberg U., Rockwell F.E., Holbrook N.M., Cochard H. 2018. Iso/Anisohydry: a plant-environment interaction rather than a simple hydraulic trait. – Trends Plant Sci. 23: 112–120. https://doi.org/10.1016/j.tplants.2017.11.002
  29. Hughes M.K., Olchev A., Bunn A.G., Berner L.T., Loslebe M., Novenko E. 2019. Different climate responses of spruce and pine growth in Northern European Russia. – Dendrochronologia. 56: 125601. https://doi.org/10.1016/j.dendro.2019.05.005
  30. IAWA list of microscopic features for hardwood identification. 1989. – IAWA Bulletin. 10: 219–332.
  31. IPCC Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 2013. Cambridge. 1535 p.
  32. Jin K., Liu X., Wang K., Jiang Z., Tian G., Yang S., Shang L., Ma J. 2018. Imaging the dynamic deposition of cell wall polymer in xylem and phloem in Populus×euramericana. – Planta. 248: 849–858. https://doi.org/10.1007/s00425-018-2931-9
  33. Kannenberg S.A., Guo J.S., Novick K.A., Anderegg W.R.L., Feng X., Kennedy D., Konings A.G., Martínez-Vilalta J., Matheny A.M. 2022. Opportunities, challenges and pitfalls in characterizing plant water-use strategies. – Funct. Ecol. 36: 24–37. https://doi.org/10.1111/1365-2435.13945
  34. Kawai K., Minagi K., Nakamura T., Saiki S.T., Yazaki K., Ishida A. 2022. Parenchyma underlies the interspecific variation of xylem hydraulics and carbon storage across 15 woody species on a subtropical island in Japan. – Tree Physiol. 42 (2): 337–350. https://doi.org/10.1093/treephys/tpab100
  35. Kishchenko I.T., Vantenkova I.V. 2013. Sezonnyj rost listvennyh lesoobrazuyushchih vidov v taezhnoj zone Rossii (na primere Karelii) [Seasonal growth of deciduous forest-forming species in the taiga zone of Russia (on the example of Karelia)]. Petrozavodsk. 94 p. (In Russ.).
  36. Kishchenko I.T., Vantenkova I.V. 2014. Sezonnyj rost hvojnyh lesoobrazuyushchih vidov v taezhnoj zone Rossii (na primere Karelii) [Seasonal growth of coniferous forest-forming species in the taiga zone of Russia (by the example of Karelia)]. Petrozavodsk. 163 p. (In Russ.).
  37. Klein T. 2014. The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. – Funct. Ecol. 28: 1313–1320. https://doi.org/10.1111/1365-2435.12289
  38. Lachenbruch B., McCulloh K.A. 2014. Traits, properties, and performance: how woody plants combine hydraulic and mechanical functions in a cell, tissue, or whole plant. – New Phytol. 204: 747–764. https://doi.org/10.1111/nph.13035
  39. Lambers H., Oliveira R.S. 2019. Plant physiological ecology. Springer Nature Switzerland AG. 736 p.
  40. Manzoni S., Vico G., Katul G., Palmroth S., Jackson R.B., Porporato A. 2013. Hydraulic limits on maximum plant transpiration and the emergence of the safety–efficiency trade-off. – New Phytol. 198: 169–178. https://doi.org/10.1111/nph.12126
  41. Martinez-Vilalta J., Garcia-Forner N. 2017. Water potential regulation, stomatal behavior and hydraulic transport under drought: deconstructing the iso/anisohydric concept. – Plant Cell Environ. 40: 962–976. https://doi.org/10.1111/pce.12846
  42. Meinzer F.C., Woodruff D.R., Marias D.E., Smith D.D., McCulloh K.A., Howard A.R., Magedman A.L. 2016. Mapping ‘hydroscapes’ along the iso- to anisohydric continuum of stomatal regulation of plant water status. – Ecol. Lett. 19: 1343–1352. https://doi.org/10.1111/ele.12670
  43. Nardini A., Savi T., Trifilò P., Gullo M.A. 2018. Drought stress and the recovery from xylem embolism in woody plants. – Progress in Botany. 79: 197–232. https://doi.org/10.1007/124_2017_11
  44. Nazarova L.E. 2015. Precipitation over the territory of Karelia. – Transactions of KarRC RAS. 9: 114–120 (In Russ.). https://doi.org/10.17076/lim56
  45. Niinemets U. 2010. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: Past stress history, stress interactions, tolerance and acclimation. – Forest Ecol. Manag. 260: 1623–1639. https://doi.org/10.1016/j.foreco.2010.07.054
  46. Nola P., Bracco F., Assini S., von Arx G., Castagneri D. 2020. Xylem anatomy of Robinia pseudoacacia L. and Quercus robur L. is differently affected by climate in a temperate alluvial forest. – Ann. For. Sci. 77 (8). https://doi.org/10.1007/s13595-019-0906-z
  47. Olano J.M., Linares J.C., García-Cervigón A.I., Arzac A., Delgado A., Rozas V. 2014. Drought-induced increase in water-use efficiency reduces secondary tree growth and tracheid wall thickness in a Mediterranean conifer. – Oecologia. 176 (1): 273–283. https://doi.org/10.1007/s00442-014-2989-4
  48. Oliveira R.S., Eller C.B., Barros F.d.V., Hirota M., Brum M., Bittencourt P. 2021. Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems. – New Phytol. 230: 904–923. https://doi.org/10.1111/nph.17266
  49. Olson M.E., Soriano D., Rosell J.A., Anfodillo T., Donoghue M.J., Edwards E.J., León-Gómez C., Dawson T., Martínez J.J.C., Castorena M., Echeverría A., Espinosa C.I., Fajardo A., Gazol A., Isnard S., Lima R.S., Marcati C.R., Méndez-Alonzo R. 2018. Plant height and hydraulic vulnerability to drought and cold. – Proc. Natl. Acad. Sci. USA. 115 (29): 7551–7556. https://doi.org/10.1073/pnas.1721728115
  50. Olson M.E., Anfodillo T., Rosell J.A., Petit G., Crivellaro A., Isnard S., León-Gómez C., Alvarado-Cárdenas L.O., Castorena M. 2014. Universal hydraulics of the flowering plants: vessel diameter scales with stem length across angiosperm lineages, habits and climates. – Ecol. Lett. 17: 988–997. https://doi.org/10.1111/ele.12302
  51. Peel M.C., Finlayson B.L., McMahon T.A. 2007. Updated world map of the Koppen-Geiger climate classification. – Hydrol. Earth Syst. Sci. 11: 1633–1644. https://doi.org/10.5194/hess-11-1633-2007
  52. Pittermann J., Sperry J.S., Hacke U.G., Wheeler J.K., Sikkema E.H. 2005. Torus-margo pits help conifers compete with angiosperms. – Science 310: 1924. https://doi.org/10.1126/science.1120479
  53. Price D.T., Alfaro R.I., Brown K.J., Flannigan M.D., Fleming R.A., Hogg E.H., Girardin M.P., Lakusta T., Johnston M., McKenney D.W., Pedlar J.H., Stratton T., Sturrock R.N., Thompson I.D., Trofymow J.A., Venier L.A. 2013. Anticipating the consequences of climate change for Canada’s boreal forest ecosystems. – Environ. Rev. 21: 322–365. https://doi.org/10.1139/er-2013-0042
  54. Pridacha V.B., Sazonova T.A., Novichonok E.V., Semin D.E., Tkachenko Yu.N., Pekkoev A.N., Timofeeva V.V., Bakhmet O.N., Olchev A.V. 2021. Clear-cutting impacts nutrient, carbon and water exchange parameters in woody plants in an east Fennoscandian pine forest. – Plant Soil. 466: 317–336. https://doi.org/10.1007/s11104-021-05058-w
  55. Pridacha V.B., Tikhova G.P., Sazonova T.A. 2018. The effect of abiotic factors on water exchange in coniferous and deciduous plants. – Transactions of KarRC RAS. 12: 76–86 (In Russ.). https://doi.org/10.17076/eb878
  56. Reich P.B., Sendall K.M., Stefanski A., Rich R.L., Hobbie S.E., Montgomery R.A. 2018. Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. – Nature. 562: 263–267. https://doi.org/10.1038/s41586-018-0582-4
  57. Rodriguez-Zaccaro F.D., Henry I.M., Groover A. 2021. Genetic regulation of vessel morphology in Populus. – Front. Plant Sci. 12. https://doi.org/10.3389/fpls.2021.705596
  58. Sazonova T.A., Bolondinskii V.K., Pridacha V.B. 2019. Resistance to moisture transport in the conductive system of Scots pine. – Russ. J. For. Sci. 6: 556–566 (In Russ.). https://doi.org/10.1134/S0024114819060081
  59. Scholz A., Klepsch M., Karimi Z., Jansen S. 2013. How to quantify conduits in wood? – Front. Plant Sci. 4: 56. https://doi.org/10.3389/fpls.2013.00056
  60. Sellin A., Taneda H., Alber M. 2019. Leaf structural and hydraulic adjustment with respect to air humidity and canopy position in silver birch (Betula pendula). – J. Plant Res. 132: 369–381. https://doi.org/10.1007/s10265-019-01106-w
  61. Sevanto S., Hölttä T., Holbrook N.M. 2011. Effects of the hydraulic coupling between xylem and phloem on diurnal phloem diameter variation. – Plant Cell Environ. 34: 690–703. https://doi.org/10.1111/j.1365-3040.2011.02275.x
  62. Simard S., Giovannelli A., Treydte K., Traversi M.L., King G.M., Frank D., Fonti P. 2013. Intra-annual dynamics of non-structural carbohydrates in the cambium of mature conifer trees reflects radial growth demands. – Tree Physiol. 33: 913–923. https://doi.org/10.1093/treephys/tpt075
  63. Sperry J.S., Hacke U.G., Pitterman J. 2006. Size and function in conifer tracheids and angiosperm vessels. – Am. J. Bot. 93: 1490–1500. https://doi.org/10.3732/ajb.93.10.1490
  64. Sperry J.S., Love D.M. 2015. What plant hydraulics can tell us about responses to climate-change droughts. – New Phytol. 207: 14–27. https://doi.org/10.1111/nph.13354
  65. Sterck F.J., Zweifel R., Sass-Klaassen U., Chowdhury Q. 2008. Persisting soil drought reduces leaf specific conductivity in Scots pine (Pinus sylvestris) and pubescent oak (Quercus pubescens). – Tree Physiol. 28 (4): 529–36. https://doi.org/10.1093/treephys/28.4.529
  66. Stroock A.D., Pagay V.V., Zwieniecki M.A., Holbrook N.M. 2014. The physicochemical hydrodynamics of vascular plants. – Annu. Rev. Fluid Mech. 46: 615–642. https://doi.org/10.1146/annurev-fluid-010313-141411
  67. Sviderskaya I.V., Vaganov E.A., Fonti M.V., Fonti P. 2021. Isometric scaling to model water transport in conifer tree rings across time and environments. – J. Exp. Bot. 72: 2672–2685. https://doi.org/10.1093/jxb/eraa595
  68. Tikhova G.P., Pridacha V.B., Sazonova T.A. 2017. The influence of air temperature and relative humidity on dynamics of water potential in Betula pendula (Betulaceae) trees. – Sib. J. For. Sci. 1: 56–64 (In Russ.). https://doi.org/10.15372/SJFS20170106
  69. Tyree M.T., Zimmermann M.H. 2002. Xylem Structure and the Ascent of Sap. 2nd Edn. Berlin, Heidelberg, New York. 365 p.
  70. Urli M., Porté A.J., Cochard H., Guengant Y., Burlett R., Delzon S. 2013. Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees. – Tree Physiol. 33: 672–83. https://doi.org/10.1093/treephys/tpt030
  71. Vaganov E.A., Hughes M.K., Shashkin A.V. 2006. Growth dynamics of conifer tree rings images of past and future environments. Berlin. 367 p.
  72. Venturas M.D., Sperry J.S., Hacke U.G. 2017. Plant xylem hydraulics: what we understand, current research, and future challenges. – J. Integr. Plant Biol. 59 (6): 356–389. https://doi.org/10.1111/jipb.12534
  73. Xiong D., Nadal M. 2020. Linking water relations and hydraulics with photosynthesis. – Plant J. 101 (4): 800–815. https://doi.org/10.1111/tpj.14595
  74. Zheng J., Li Y., Morris H., Vandelook F., Jansen S. 2022. Variation in tracheid dimensions of conifer xylem reveals evidence of adaptation to environmental conditions. – Front. Plant Sci. 13. https://doi.org/10.3389/fpls.2022.774241

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (2MB)
3.

Download (5MB)
4.

Download (375KB)
5.

Download (231KB)
6.

Download (78KB)

Copyright (c) 2023 V.B. Pridacha, T.V. Tarelkina, Ya.A. Neronova, N.V. Tumanik

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies