PECULIARITIES OF SHOOTS OF AXES OF DIFFERENT ORDERS IN THE CROWN STRUCTURE OF ULMUS GLABRA (ULMACEAE) VIRGINAL TREES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The crown of model trees growing in natural habitats is characterized. An attempt was made to identify more conservative and stable traits of crown axes of different orders. The dependence of the composition of shoots of second-order axes on their position in the first-order axis of the maternal growth is shown. The relationship between the lifetime of the axes and the time of their growth (aging) is revealed. Skeletal axes of the second order show similar pattern of changing the number of shoots from year to year, but differ in the length of their constituent shoots. The axes of the third, fourth and fifth orders determine individual differences of trees, by adjusting them to specific habitats. It was revealed that the change in the dominance of the fourth order over the third one in the crown reflects the regulation of the crown development under specific conditions and the rate of ontogeny. Acrotonia in the form of a stronger development of lateral shoots in the second and third positions from above on the mother shoot is characteristic of all branching orders. With an increase of the branching order, the manifestation of acrotonia is smoothed out. In this regard, the shoots of high orders become more and more similar to each other, which is particularly associated with the manifestation of the aging effect.

About the authors

I. S. Antonova

St. Petersburg State University

Author for correspondence.
Email: ulmaceae@mail.ru
Russia, 199034, St. Petersburg, Universitetskaya Emb., 7/9

M. S. Televinova

St. Petersburg State University

Email: ulmaceae@mail.ru
Russia, 199034, St. Petersburg, Universitetskaya Emb., 7/9

V. A. Bart

St. Petersburg State University ; Almazov National Medical Research Centre of the Ministry of Health of Russia

Email: ulmaceae@mail.ru
Russia, 199034, St. Petersburg, Universitetskaya Emb., 7/9; Russia, 197341, St. Petersburg, Akkuratova Str., 2

References

  1. Antonova I.S., Fatianova E.V. 2016. About the system of hierarchical levels of the structure trees of the temperate zone. – Bot. Zhurn. 101 (6): 628–649 (In Russ.).
  2. Barthelemy D., Caraglio Y. 2007. Plant architecture: A dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. – Annals of Botany. 99: 375–407. https://doi.org/10.1093/aob/mcl260
  3. Barthelemy D., Edelin C., Halle F. 1991. Canopy architecture. – Physiology of Trees. New York. P. 1–20.
  4. Buissart F., Vennetier M., Delagrange S., Girard F., Caraglio Y., Sylvie-Annabel Sabatier S.-A., Munson A.D., Nicolini E.-A. 2018. The relative weight of ontogeny, topology and climate in the architectural development of three North American conifers. – AoB PLANTS. 10: 1–17. https://doi.org/10.1093/aobpla/ply045
  5. Caraglio Y., Barthelemy D., Edelin C., Nicolini E.-A., Heuret P. 2016. Understanding plant growth dynamics: links between morpho-anatomical structure and phenology. – ATBC. Tropical ecology and society reconciliating conservation and sustainable use of biodiversity. Program and abstracts. P. 116.
  6. Caraglio P.Y., Edelin C. 1990. Architecture et dynamique de croissance du platane. Platanus hybrida Brot. (Platanaceae) Syn. Platanus acerifolia (Aiton) Willd. – Bulletin de la Societe Botanique de France. Lettres Botaniques. 137: 279–291. https://doi.org/10.1080/01811797.1990.10824889
  7. Carvalho B., Ribeiro S.P. 2018. Architecture of Mabea fistulifera Mart. (Euphorbiaceae), a Neotropical semideciduous tree: development and variations in crown allometry between environments. – Flora: Morphology, Distribution, Functional Ecology of Plants. 239: 104–110. https://doi.org/10.1016/j.flora.2017.12.003
  8. Chistyakova A.A., Zaugolnova L.B., Poltinkina I.V., Kutina I.S., Lazinskii N.N. 1989. Diagnozy i klyuchi vozrastnykh sostoyaniy lesnykh rasteniy. Derevya i kustarniki: metodicheskie razrabotki dlya studentov biologicheskikh spetsialnostey. I. [Diagnoses and keys of age states of forest plants. Trees andshrubs: methodical developments for students of biological specialities (ed. O.V. Smirnova). I.]. Moscow. 102 p. (In Russ.).
  9. Chomicki G., Coiro M., Renner S.S. 2017. Evolution and ecology of plant architecture: Integrating insights from the fossil record, extant morphology, developmental genetics and phylogenies. – Annals of Botany. 120: 855–891. https://doi.org/10.1093/aob/mcx113
  10. Cieslak M., Seleznyova A.N., Hanan J. 2011. A functionalstructural kiwifruit vine model integrating architecture, carbon dynamics and effects of the environment. – Annals of Botany. 107: 747–764. https://doi.org/10.1093/aob/mcq180
  11. Durand J.B., Allard A., Guitton B., Van de Weg E., Bink M.C.A.M., Costes E. 2018. Genetic determinism of flowering regularity over years in an apple multi-family population. – Acta Horticulturae. 1229: 15–22. https://doi.org/10.17660/ActaHortic.2018.1229.3
  12. Gatsuk L.E. 2008. Ierarkhicheskaya sistema strukturno-biologicheskikh edinits rastitel’nogo organizma [Hierarchical system of structural biological units of plant organism. Modern approaches to thedescription of plants structure]. – In: Sovremennye podkhody k opisaniyu struktury rasteniya. Kirov. P. 32–47 (In Russ.).
  13. Getmanets I.A. 2008. Podkhody k analizu biomorf vida roda Salix (na primere iv Yuzhnogo Urala) [Approaches to the analysis of biomorph species of the genus Salix (willows of the Southern Urals asexample)]. – In: Sovremennye podkhody k opisaniyu struktury rasteniya. Kirov. P. 108–115 (In Russ.).
  14. Grudzinskaya I.A. 1974. About the main types of branching (critical notes). – Bot. Zhurn. 59: 572–577 (In Russ.).
  15. Heuret P., Caraglio Y., Sabatier S.-A., Barthélémy D., Nicolini E.-A. 2016. Retrospective analysis of plant architecture: an extended definition of dendrochronology. ATBC. 118 p.
  16. Hover A., Buissart F., Caraglio Y., Heinz Ch., Pailler F., Ramel M., Vennetier M., Prevosto B., Sabatier S. 2017. Growth phenology in Pinus halepensis Mill.: apical shoot bud content and shoot elongation. – Annals of Forest Science. 74(2): 1–10. https://doi.org/10.1007/s13595-017-0637-y
  17. Kasatkina G.A., Fedorova N.N., Rusakov A.V., Schastnaya L.S., Rastvorova O.G. 2012. Gosudarstvennyy prirodnyy biosfernyy zapovednik “Belogor‘e” [State Natural Biosphere Reserve “Belogorye”]. – NIA: Priroda. P. 87–91 (In Russ.).
  18. Krenke N.P. 1940. Teoriya tsiklicheskogo stareniya i omolozheniya rasteniy i prakticheskoe ee primenenie [Theory of cyclic aging and rejuvenation of plants and its practical application]. Moscow. 136 p. (In Russ.).
  19. Lauri P.E., Bourdel G., Trottier C., Cochard H. 2008. Apple shoot architecture: Evidence for strong variability of bud size and composition and hydraulics within a branching zone. – New Phytologist. 178: 798–807. https://doi.org/10.1111/j.1469-8137.2008.02416.x
  20. Lauri P.E., Normand F. 2017. Are leaves only involved in flowering? Bridging the gap between structural botany and functional morphology. – Tree Physiology. 37: 1137–1139. https://doi.org/10.1093/treephys/tpx068
  21. Leonova N.A. 1999. Sostoyanie populyatsiy vyaza shershavogo (Ulmus glabra L.) v usloviyakh raznogo osveshcheniya v starovozrastnykh shirokolistvennykh soobshchestvakh Kaluzhskoy i Penzenskoy oblastey [The population status of the rough elm (Ulmus glabra L.) in different conditions of radiation in old-growth broad-leaved communities in Kaluga and Penza regions]. – Lesovedenie. 6: 59–64 (In Russ.).
  22. Matsunaga F.T., Tosti J.B., Androcioli-Filho A., Brancher J.D., Costes E., Rakocevic M. 2016. Strategies to reconstruct 3D Coffea arabica L. plant structure. – SpringerPlus. 5: 2075. https://doi.org/10.1186/s40064-016-3762-4
  23. Meszaros M., Krška B., Costes E. 2018. Analysis of bearing behaviors of “Velkopavlovicka” apricot clones. – Acta Horticulturae. 1229: 235–242. https://doi.org/10.17660/ActaHortic.2018.1214.1
  24. Mixalevskaya O.B. 2002. Morfogenez pobegov drevesnykh rasteniy. Etapy morfogeneza i ikh regulyatsiya [Morphogenesis of shoots of woody plants. Stages of morphogenesis and their regulation]. Moscow. 66 p. (In Russ.).
  25. Neshataev Yu.N. 1986. Geobotanicheskaya kharakteristika tipov lesa zapovednika “Les na Vorskle” [Geobotanical characteristics of forest types of the reserve “forest on the Vorskla”]. – In: Kompleksnye issledovaniya biogeotsenozov lesostepnykh dubrav. Leningrad. P. 32–48 (In Russ.).
  26. Normand F., Lauri P.-E. 2018. Advances in understanding mango tree growth and canopy development. – In: Achieving sustainable cultivation of mangoes. Cambridge. P. 87–119. https://doi.org/10.19103/AS.2017.0026.06
  27. Pallas B., Da Silva D., Valsesia P., Yang W., Guillaume O., Lauri P.-E., Vercambre G., Genard M., Costes E. 2016. Simulation of carbon allocation and organ growth variability in apple tree by connecting architectural and source-sink models. – Annals of Botany. 118: 317–330. https://doi.org/10.1093/aob/mcw085
  28. Prats-Llinas M.T., Lopez G., Fyhrie K., Pallas B., Guedon Y., Costes E., DeJong Th.M. 2019. Long proleptic and sylleptic shoots in peach (Prunus persica L. Batsch) trees have similar, predetermined, maximum numbers of nodes and bud fate patterns. – Annals of Botany. 123: 993–1004. https://doi.org/10.1093/aob/mcy232
  29. Puntieri J., Torres C., Magnin A., Stecconi M., Grosfeld J. 2018. Structural differentiation among annual shoots as related to growth dynamics in Luma apiculata trees (Myrtaceae). – In: Flora: Morphology, Distribution, Functional Ecology of Plants. 249: 86–96. https://doi.org/10.1093/AOB/MCG175
  30. Serebriakov I.G. 1952. Morfologiya vegetativnykh organov vysshikh rasteniy [Morphology of higher plants vegetative organs]. Moscow. 392 p. (In Russ.).
  31. Serebryakov I.G. 1962. Ekologicheskaya morfologiya rasteniy: Zhiznennye formy pokrytosemennykh i khvoinykh [Ecological morphology of plants: Life forms of angiosperms and conifers]. Moscow. 378 p. (In Russ.).
  32. Serebryakova T.I. 1972. Uchenie o zhiznennykh formakh rasteniy na sovremennom etape [The doctrine of the life forms of plants at the present stage]. – Itogi nauki i tekhniki. Ser. Botanika. 1: 84–169 (In Russ.).
  33. Suzuki A.A. 2002. Influence of shoot architectural position on shoot growth and branching patterns in Cleyera japonica. – Tree Physiology. 22: 885–889. https://doi.org/10.1093/treephys/22.12.885
  34. Suzuki A.A. 2003. Shoot growth patterns in saplings of Cleyera japonica in relation to light and architectural position. – Tree Physiology. 23: 67–71. https://doi.org/10.1093/treephys/23.1.67
  35. Suzuki A.A., Suzuki M. 2009. Why do lower order branches show greater shoot growth than higher order branches? Considering space availability as a factor affecting shoot growth. – Trees – Structure and Function. 23: 69–77. https://doi.org/10.1007/s00468-008-0255-2
  36. Takenaka A. 1994. A simulation model of tree architecture development based on growth response to local light environment. – Journal of Plant Research. 107: 321–330. https://doi.org/10.1007/BF02344260
  37. Yang W.-W., Chen X.-L., Saudreau M., Zhang X.-Y., Zhang M., Liu H., Costes E., Han M. 2016. Canopy structure and light interception partitioning among shoots estimated from virtual trees: comparison between apple cultivars grown on different interstocks on the Chinese Loess Plateau. – Trees. 30: 1723–1734. https://doi.org/10.1007/s00468-016-1403-8
  38. Yang W., Zhang X., Saudreau M., Zhang D., Costes E., Han M. 2019. Photosynthetic capacity in “Fuji” apple trees influenced by interstocks at leaf and Canopy scale. – Acta Horticulturae. 1261: 77–84. https://doi.org/10.17660/ActaHortic.2019.1261.14
  39. Zaugolnova L.B. 1968. Vozrastnye etapy v ontogeneze yasenya obyknovennogo (Fraxinus excelsior L.) [Age phases in ontogenesis of ash (Fraxinus excelsior L.)]. – Questions of flowring plants morphogenesis and it’s population structure. Moscow. P. 81–102 (In Russ.).

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (77KB)
3.

Download (73KB)
4.

Download (324KB)

Copyright (c) 2023 И.С. Антонова, М.С. Телевинова, В.А. Барт

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies