Glia–Neuron Interactions in the Sensory-Motor Cortex of Warm-Blooded Animals (Guinea Pigs and Ground Squirrels) with Different Habitat Conditions and the M-Cholinergic Reaction of the Brain


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The glia–neuron interactions were analyzed in the sensory-motor cortex of guinea pigs and ground squirrels (Spermophilus undulatus) during the active summer months. The glial cells were more concentrated in close proximity (15–25 μm) to neurons (38% in guinea pigs and 22.4% in ground squirrels). A more concentrated distribution of glial cells might be very necessary for spontaneous inactive nerve cells (37.2% in guinea pigs and 23% in ground squirrels), since these neurons are associated with the highest energy demand during their functioning and are most susceptible to disturbances of ion homeostasis. The network structure of glia and the close contact between glial cells and brain capillaries provide additional energy for neurons and stabilize the ion balance in the extracellular medium. Glial density in the sensory-motor cortex of ground squirrels is 3 times higher than that in the cortex of guinea pigs. The high content of glial cells in the ground-squirrel cortex is the most important protective factor for survival of animals during long-term hibernation, when the diffusion of K+ ions from nerve cells drastically increases due to the high temperature sensitivity of the M-cholinergic response.

Sobre autores

N. Zakharova

Institute of Cell Biophysics

Autor responsável pela correspondência
Email: zubkov@mi.ras.ru
Rússia, Pushchino, Moscow oblast, 142290

D. Voronkov

Research Center of Neurology

Email: zubkov@mi.ras.ru
Rússia, Moscow, 125367

R. Khudoerkov

Research Center of Neurology

Email: zubkov@mi.ras.ru
Rússia, Moscow, 125367

N. Pasikova

Institute of Higher Nervous Activity and Neurophysiology

Email: zubkov@mi.ras.ru
Rússia, Moscow, 117485

Yu. Mednikova

Institute of Higher Nervous Activity and Neurophysiology

Email: zubkov@mi.ras.ru
Rússia, Moscow, 117485

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Inc., 2018