Analysis of multifractality of various components of electroencephalograms in mental disorders

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The method of finding maxima of the moduli of the wavelet coefficients was used to perform a comparative analysis of the multifractality of various components of electroencephalograms in normal conditions and in mental disorders such as schizophrenia and depression. It is shown that for each type of mental disorders, the position of the singularity spectrum is stable in most areas of the brain, and the main differences between multifractal properties are associated with the alpha components of electroencephalograms. The group of individuals affected with depression is characterized by anticorrelated dynamics of successive values of the alpha components, and the group of individuals with schizophrenia is characterized by a combination of anticorrelated and correlated dynamics, thus, it can be useful for the clinical diagnosis of neuronal disorders.

作者简介

O. Dick

Pavlov Institute of Physiology, Russian Academy of Sciences

Email: dickviola@gmail.com
St. Petersburg, Russia

参考

  1. A. Eke, P. Hermann, L. Kocsis, et al., Physiol. Meas., 23 (1), 1 (2002).
  2. P. A. Watters and F. Martin, Biol. Psychol., 66, 79 (2004).
  3. D. Popivanov, V. Stomonyakov, Z. Minchev, et al., Biol. Cybernetics, 94, 149 (2006).
  4. M. A. Qianli, N. Xinba, W. Jun, et al., Chinese Sci. Bulletin, 51, 3059 (2006).
  5. A. M. Wink, E. Bullmore, A. Barnes, et al., Human Brain Mapping, 29, 791 (2008).
  6. M. Nurujjaman, R. Narayanan, S. Iyengar, Nonlinear Biomed. Physics, 3, 6 (2009).
  7. O. E. Dick and I. A. Mochovikova, in Chaos Theory: Modeling, Simulation and Applications, Ed. by C.H. Skiadas, I. Dimotikalis and C. Skiadas (World Scientific Publ., 2011), pp. 159-166.
  8. O. E. Dick and I. A. Svyatogor, Neurocomputing, 82, 207 (2012).
  9. O. E. Dick and I. A. Svyatogor, Neurocomputing, 165, 361 (2015).
  10. E. A. Ihlen, Front. Physiol., 3, 141 (2012).
  11. B. S. Raghavendra, D. N. Dutt, H. N. Halahalli, et al., Physiol. Measur., 30 (8),795 (2009).
  12. W. Wang, S. Zhang, and X. Ning, Chinese Biomed. Engineer. Trans., 23, 511 (2004).
  13. J. Suckling, A. M. Wink, F. A. Bernard, et al., J. Neurosci. Methods, 174, 292 (2008).
  14. P. Mukli, Z. Nagy, F. S. Racz, et al., Front. Physiol., 9, 1072 (2018).
  15. R. Sassi, M. G. Signorini, and S. Cerutti, Chaos, 19, 028507 (2009).
  16. N. Scafetta, R. E. Moon, and B. J. West, Complexity, 12, 12 (2007).
  17. O. E. Dick, Neurocomputing, 243, 142 (2017).
  18. О. Е. Дик, Биофизика, 66 (3), 1 (2021).
  19. P. C. Ivanov, L. A. Amaral, A. L. Goldberger, et al. Nature, 399, 461 (1999).
  20. А. Н. Павлов и В. С. Анищенко, Успехи физ. наук, 177, 859 (2007).
  21. T. Takahashi, H. Kosaka, T. Murata, et al., Psych. Res. Neuroimaging, 171, 177 (2009).
  22. F. S. Racz, K. Farkas, O. Stylianou, et al., Brain Behav., 11, 181 (2021).
  23. T. Takashi Ozaki, A. Toyomaki, N. Hashimoto, et al., Clin. Psychopharmacol. Neurosci., 19, 313 (2021).
  24. J. F. Muzy, E. Bacry, and A. Arneodo, Phys. Rev., 47, 875 (1993).
  25. A. L. Goldberger, L. A. N. Amaral, L. Glass, et al., Circulation, 101 (23):215 (2009).
  26. A. Arneodo, E. Bacry, and J. F. Muzy, Physica A, 213, 232 (1995).
  27. O. E. Dick, S. V. Murav'eva, V. S. Lebedev, et al., Front. Physiol., 13, 1 (2022).

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##