Анализ мультифрактальности различных компонент электроэнцефалограмм при психических расстройствах

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

С помощью метода поиска максимумов модулей вейвлет-коэффициентов выполнен сравнительный анализ мультифрактальности различных компонент электроэнцефалограмм в норме и при таких психических расстройствах, как шизофрения и депрессия. Показано, что для каждого типа психических расстройств положение спектра сингулярности стабильно для большинства областей мозга, и основные отличия мультифрактальных свойств связаны с альфа-компонентами электроэнцефалограмм. Для группы с депрессией характерна антикоррелированная динамика последовательных значений альфа-компонент, а для группы с шизофренией - сочетание антикоррелированной и коррелированной динамики, что может быть полезно для клинической диагностики нейрональных нарушений.

Об авторах

О. Е Дик

Институт физиологии им. И.П. Павлова РАН

Email: dickviola@gmail.com
Санкт-Петербург, Россия

Список литературы

  1. A. Eke, P. Hermann, L. Kocsis, et al., Physiol. Meas., 23 (1), 1 (2002).
  2. P. A. Watters and F. Martin, Biol. Psychol., 66, 79 (2004).
  3. D. Popivanov, V. Stomonyakov, Z. Minchev, et al., Biol. Cybernetics, 94, 149 (2006).
  4. M. A. Qianli, N. Xinba, W. Jun, et al., Chinese Sci. Bulletin, 51, 3059 (2006).
  5. A. M. Wink, E. Bullmore, A. Barnes, et al., Human Brain Mapping, 29, 791 (2008).
  6. M. Nurujjaman, R. Narayanan, S. Iyengar, Nonlinear Biomed. Physics, 3, 6 (2009).
  7. O. E. Dick and I. A. Mochovikova, in Chaos Theory: Modeling, Simulation and Applications, Ed. by C.H. Skiadas, I. Dimotikalis and C. Skiadas (World Scientific Publ., 2011), pp. 159-166.
  8. O. E. Dick and I. A. Svyatogor, Neurocomputing, 82, 207 (2012).
  9. O. E. Dick and I. A. Svyatogor, Neurocomputing, 165, 361 (2015).
  10. E. A. Ihlen, Front. Physiol., 3, 141 (2012).
  11. B. S. Raghavendra, D. N. Dutt, H. N. Halahalli, et al., Physiol. Measur., 30 (8),795 (2009).
  12. W. Wang, S. Zhang, and X. Ning, Chinese Biomed. Engineer. Trans., 23, 511 (2004).
  13. J. Suckling, A. M. Wink, F. A. Bernard, et al., J. Neurosci. Methods, 174, 292 (2008).
  14. P. Mukli, Z. Nagy, F. S. Racz, et al., Front. Physiol., 9, 1072 (2018).
  15. R. Sassi, M. G. Signorini, and S. Cerutti, Chaos, 19, 028507 (2009).
  16. N. Scafetta, R. E. Moon, and B. J. West, Complexity, 12, 12 (2007).
  17. O. E. Dick, Neurocomputing, 243, 142 (2017).
  18. О. Е. Дик, Биофизика, 66 (3), 1 (2021).
  19. P. C. Ivanov, L. A. Amaral, A. L. Goldberger, et al. Nature, 399, 461 (1999).
  20. А. Н. Павлов и В. С. Анищенко, Успехи физ. наук, 177, 859 (2007).
  21. T. Takahashi, H. Kosaka, T. Murata, et al., Psych. Res. Neuroimaging, 171, 177 (2009).
  22. F. S. Racz, K. Farkas, O. Stylianou, et al., Brain Behav., 11, 181 (2021).
  23. T. Takashi Ozaki, A. Toyomaki, N. Hashimoto, et al., Clin. Psychopharmacol. Neurosci., 19, 313 (2021).
  24. J. F. Muzy, E. Bacry, and A. Arneodo, Phys. Rev., 47, 875 (1993).
  25. A. L. Goldberger, L. A. N. Amaral, L. Glass, et al., Circulation, 101 (23):215 (2009).
  26. A. Arneodo, E. Bacry, and J. F. Muzy, Physica A, 213, 232 (1995).
  27. O. E. Dick, S. V. Murav'eva, V. S. Lebedev, et al., Front. Physiol., 13, 1 (2022).

© Российская академия наук, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах