Влияние динамики микроокружения триптофана на параметры его флуоресценции в зависимости от температуры

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследованы температурные зависимости быстрых и медленных компонент затухания флуоресценции водного раствора молекул триптофана в диапазоне - 170°C-20°C, замороженных на свету и в темноте. Для количественного анализа использована модель прямых и обратных электронных переходов в молекуле триптофана из возбужденного состояния в основное состояние и в состояние с переносом заряда. Выделены три основные спектральные области флуоресценции триптофана, отличающиеся различным поведением температурных зависимостей скоростей перехода из возбужденного состояния триптофана в состояние с переносом заряда. Показана ключевая роль динамики системы водородных связей, определяющих нелинейный характер изменения параметров флуоресценции триптофана в выделенных спектральных областях. Нелинейное поведение длительности флуоресценции и спектров флуоресценции при изменении температуры определяется характером взаимодействия триптофана с водой и льдом. Показана важная роль, которую играют температурные перестройки в системе водородных связей структурных конфигураций Н2О, окружающей молекулу триптофана в возбужденном состоянии.

Об авторах

В. В Горохов

Московский государственный университет имени М.В. Ломоносова

Москва, Россия

П. П Нокс

Московский государственный университет имени М.В. Ломоносова

Москва, Россия

Б. Н Корватовский

Московский государственный университет имени М.В. Ломоносова

Москва, Россия

С. Н Горячев

Московский государственный университет имени М.В. Ломоносова

Москва, Россия

В. З Пащенко

Московский государственный университет имени М.В. Ломоносова

Email: vz.paschenko@gmail.com
Москва, Россия

А. Б Рубин

Московский государственный университет имени М.В. Ломоносова

Москва, Россия

Список литературы

  1. J. L.Dashnau, B. Zelent, and J. M. Vanderkooi, Biophys. Chem., 114, 71 (2005).
  2. D. E. Schlamadinger, J. E. Gable, and J. E. Kim, J. Phys. Chem. B, 113, 14769 (2009).
  3. Э. А. Бурштейн, Молекуляр. биология, 17, 455 (1983).
  4. A. G. Szabo and D. M. Rayner, J. Am. Chem. Soc., 102, 554 (1980).
  5. J. R. Lakowicz, Principles of fluorescence spectroscopy, 3nd ed. (Springer, New York, 2006).
  6. P. D. Adams, Y. Chen, K. Ma et al., J. Am. Chem. Soc., 124, 9278 (2002).
  7. J. A. Ross and D. M. Jameson, Photochem. Photobiol. Sci., 7, 1301 (2008).
  8. P. P. Knox, E. P. Lukashev, V. V. Gorokhov, et al., J. Photochem. Photobiol. B: Biology, 189, 145 (2018).
  9. P. P. Knox, V. V. Gorokhov, B. N. Korvatovsky, et al. J. Photochem. Photobiol. A: Chemistry, 393, 112435 (2020).
  10. В. В. Горохов, Б. Н. Корватовский, П. П. Нокс и др., Докл. РАН. Науки о жизни, 498, 19 (2021).
  11. В. З. Пащенко, В. В. Горохов, Б. Н. Корватовский и др., Биофизика, 66, 354 (2021).
  12. J. Pieper, Th. Hauss, A. Buchsteiner, et al., Biochemistry, 46, 11398 (2007).
  13. W. Doster, Eur. Biophys., J. 37, 591 (2008).
  14. K. L. Han and G. J. Zhao, Hydrogen Bonding and Transfer in the Excited State (John Wiley & Sons Ltd., Chichester, UK, 2011).
  15. H. Liu, H. Zhang, and B. Jin. Spectrochim. Acta. Part A: Molecular and Biomolecular Spectroscopy, 106, 54 (2013).
  16. Р. Блинц и Б. Жекш, Сегнетоэлектрики и антисегнетоэлектрики. Динамика решетки (Мир, М., 1975).
  17. K. Vandewal, Annu. Rev. Phys. Chem., 67, 113 (2016).
  18. M. G. Muller, K. Griebenow, and A. R. Holzwarth, Chem. Phys. Lett., 199, 465 (1992).
  19. Y. Miloslavina, M. Szczepaniak, M. G. Muller, et al. Biochemistry, 45, 2436 (2006).
  20. R. A. Marcus and N. Sutin, Biochim. Biophys. Acta, 811, 265 (1985).
  21. P. M. Krasilnikov, P. P. Knox, and A. B.Rubin, Photochem. Photobiol. Sci., 8, 181 (2009).
  22. А. Б. Рубин, Биофизика (М., 2013), т. 3.
  23. В. И. Лобышев, Б. Д. Рыжиков и Р. Э. Шихлинская, Биофизика, 43 (4), 710 (1998).
  24. S. Pershin and A. Bunkin, Laser Physics, 19, 1410 (2009). DOI: 10.1134/ S1054660X0907007X
  25. K. B. Jinesh and J. W. M. Frenken, Appl. Phys. Lett., 101, 036101 (2008).
  26. J. Davis, K. Gierszal, P. Wang, and D. Ben-Amotz, Nature, 491, 582 (2012). doi: 10.1038/nature11570

© Российская академия наук, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах