Influence of the microenvironment dynamics of tryptophan on its fluorescence parameters at different temperatures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The temperature dependences of the fast and slow fluorescence decay components of aqueous solution of tryptophan molecules after freezing to -170°C - 20°C under actinic light and in the dark were investigated. A model of the direct and reverse electronic transitions from an excited state to the ground state and to the state with charge transfer for a tryptophan molecule was used to perform quantitative analysis. Three main spectral regions of tryptophan fluorescence are shown, they differ in the behavior of the temperature dependences depicted for the rates of transition from the excited state of tryptophan to the state with charge transfer. It has been shown that the dynamics of the hydrogen bonded system plays a key role in this transition. The system of hydrogen bonding determines the nonlinear nature in tryptophan fluorescence in the selected spectral regions. The non-linear behavior of the fluorescence lifetime and fluorescence spectra with temperature change is determined by the type of the interaction of tryptophan with water and ice. It has been found that temperature rearrangements play a critical role in hydrogen bonding structure of H2O 2 that surrounds a tryptophan molecule in the excited state.

About the authors

V. V Gorokhov

Lomonosov Moscow State University

Moscow, Russia

P. P Knox

Lomonosov Moscow State University

Moscow, Russia

B. N Korvatovsky

Lomonosov Moscow State University

Moscow, Russia

S. N Goryachev

Lomonosov Moscow State University

Moscow, Russia

V. Z Paschenko

Lomonosov Moscow State University

Email: vz.paschenko@gmail.com
Moscow, Russia

A. B Rubin

Lomonosov Moscow State University

Moscow, Russia

References

  1. J. L.Dashnau, B. Zelent, and J. M. Vanderkooi, Biophys. Chem., 114, 71 (2005).
  2. D. E. Schlamadinger, J. E. Gable, and J. E. Kim, J. Phys. Chem. B, 113, 14769 (2009).
  3. Э. А. Бурштейн, Молекуляр. биология, 17, 455 (1983).
  4. A. G. Szabo and D. M. Rayner, J. Am. Chem. Soc., 102, 554 (1980).
  5. J. R. Lakowicz, Principles of fluorescence spectroscopy, 3nd ed. (Springer, New York, 2006).
  6. P. D. Adams, Y. Chen, K. Ma et al., J. Am. Chem. Soc., 124, 9278 (2002).
  7. J. A. Ross and D. M. Jameson, Photochem. Photobiol. Sci., 7, 1301 (2008).
  8. P. P. Knox, E. P. Lukashev, V. V. Gorokhov, et al., J. Photochem. Photobiol. B: Biology, 189, 145 (2018).
  9. P. P. Knox, V. V. Gorokhov, B. N. Korvatovsky, et al. J. Photochem. Photobiol. A: Chemistry, 393, 112435 (2020).
  10. В. В. Горохов, Б. Н. Корватовский, П. П. Нокс и др., Докл. РАН. Науки о жизни, 498, 19 (2021).
  11. В. З. Пащенко, В. В. Горохов, Б. Н. Корватовский и др., Биофизика, 66, 354 (2021).
  12. J. Pieper, Th. Hauss, A. Buchsteiner, et al., Biochemistry, 46, 11398 (2007).
  13. W. Doster, Eur. Biophys., J. 37, 591 (2008).
  14. K. L. Han and G. J. Zhao, Hydrogen Bonding and Transfer in the Excited State (John Wiley & Sons Ltd., Chichester, UK, 2011).
  15. H. Liu, H. Zhang, and B. Jin. Spectrochim. Acta. Part A: Molecular and Biomolecular Spectroscopy, 106, 54 (2013).
  16. Р. Блинц и Б. Жекш, Сегнетоэлектрики и антисегнетоэлектрики. Динамика решетки (Мир, М., 1975).
  17. K. Vandewal, Annu. Rev. Phys. Chem., 67, 113 (2016).
  18. M. G. Muller, K. Griebenow, and A. R. Holzwarth, Chem. Phys. Lett., 199, 465 (1992).
  19. Y. Miloslavina, M. Szczepaniak, M. G. Muller, et al. Biochemistry, 45, 2436 (2006).
  20. R. A. Marcus and N. Sutin, Biochim. Biophys. Acta, 811, 265 (1985).
  21. P. M. Krasilnikov, P. P. Knox, and A. B.Rubin, Photochem. Photobiol. Sci., 8, 181 (2009).
  22. А. Б. Рубин, Биофизика (М., 2013), т. 3.
  23. В. И. Лобышев, Б. Д. Рыжиков и Р. Э. Шихлинская, Биофизика, 43 (4), 710 (1998).
  24. S. Pershin and A. Bunkin, Laser Physics, 19, 1410 (2009). DOI: 10.1134/ S1054660X0907007X
  25. K. B. Jinesh and J. W. M. Frenken, Appl. Phys. Lett., 101, 036101 (2008).
  26. J. Davis, K. Gierszal, P. Wang, and D. Ben-Amotz, Nature, 491, 582 (2012). doi: 10.1038/nature11570

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies