Dependence of the oxygen release intensity from red cells on the degree of their clustering in sludges

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

An efficiency of oxygen release from red cells strongly depends on the regimes of their motion through microvessels. Mathematical model of oxygen transfer taking into account the red cells ability to form intravascular sludges has been constructed and studied. An analytical expression for the dependence of the oxygen release intensity on the size of erythrocyte sludges were derived. The possible significance of the obtained results for the express diagnostics of the red cell’s ability for an oxygen transmission is discussed.

Sobre autores

I. Ponomarev

National Medical Research Center for Hematology, Ministry of Health of the Russian Federation;Moscow Institute of Physics and Technology

Moscow, Russia;Dolgoprudny, Moscow Region, Russia

G. Guria

National Medical Research Center for Hematology, Ministry of Health of the Russian Federation;Moscow Institute of Physics and Technology

Email: guria@blood.ru
Moscow, Russia;Dolgoprudny, Moscow Region, Russia

Bibliografia

  1. C. Wang and A. S. Popel, Math Biosci., 116 (1), 89 (1993). doi: 10.1016/0025-5564(93)90062-f
  2. E. Ortiz-Prado, J. F. Dunn, J. Vasconez, et al., Am. J. Blood Res., 9 (1), 1 (2019).
  3. A. Sircan-Kucuksayan, M. Uyuklu, and M. Canpolat, Physiol. Meas., 36, 2461 (2015). doi: 10.1088/09673334/36/12/2461
  4. A. M. Pilotto, A. Adami, R. Mazzolari, et al., J. Physiol., 600 (18), 4153 (2022). doi: 10.1113/JP283267
  5. N. Tateishi, N. Maeda, and T. Shiga, Circ. Res., 70 (4), 812 (1992). doi: 10.1161/01.RES.70.4.812
  6. A. G. Tsai, P. C. Johnson, and M.Intaglietta, Physiol. Rev., 83, 933 (2003). doi: 10.1152/physrev.00034.2002
  7. D. C. Poole, T. I. Musch, and T. D. Colburn, Eur. J. Appl. Physiol., 122, 7 (2022). doi: 10.1007/s00421-021-04854-7
  8. H. Kohzuki, S. Sakata, Y. Ohga, et al., Jap. J. Physiol., 50, 167 (2000). doi: 10.2170/jjphysiol.50.167
  9. N. Tateishi, Y. Suzuki, I. Cicha, and N. Maeda, Am. J. Physiol. - Heart and Circulatory Physiology, 281, H448 (2001). doi: 10.1152/ajpheart.2001.281.1.H448
  10. M. Uyuklu, H. J. Meiselman, and O. K. Baskurt, Clin. hemorheology and microcirculation, 41 (3), 179 (2009). doi: 10.3233/CH-2009-1168
  11. A. Semenov, A. Lugovtsov, P. Ermolinskiy, et al., Photonics, 9 (4), 1 (2022). doi: 10.3390/photonics9040238
  12. R. J. Tomanek, Anatom. Record, 305 (11), 3199 (2022). doi: 10.1002/ar.24951
  13. D. C. Poole and T. I. Musch, Function, 4 (3), zqad013 (2023). doi: 10.1093/function/zqad013
  14. A. Melkumyants, L. Buryachkovskaya, N. Lomakin, et al., Thrombosis and Haemostasis, 122 (01), 123 (2022). doi: 10.1055/a-1551-9911
  15. A. Gupta, M. V. Madhavan, K. Sehgal, et al., Nature Medicine, 26 (7), 1017 (2020). doi: 10.1038/s41591-020-0968-3
  16. S. Chien, in The red blood cell, Ed. by D. M. Surgenor (Acad. Press, London, New York, San Francisco, 1975), pp. 1031-1133.
  17. A. N. Beris, J. S. Horner, S. Jariwala, et al., Soft Matter, 17 (47), 10591 (2021). doi: 10.1039/D1SM01212F
  18. D. A. Fedosov, M. Peltomaki, and G. Gompper, Soft Matter, 10, 4258 (2014). doi: 10.1039/C4SM00248B
  19. N. Z. Piety, W. H. Reinhart, P. H. Pourreau, et al., Transfusion, 56, 844 (2016). doi: 10.1111/trf.13449
  20. T. J. McMahon, Front. Physiol., 10 (1417), 1 (2019). doi: 10.3389/fphys.2019.01417
  21. J. T. Celaya-Alcala, G. V. Lee, A. F. Smith, et al., J. Cerebral Blood Flow & Metabolism, 41 (3), 656 (2021). doi: 10.1177/0271678X20927100
  22. И. Н. Бронштейн и К. А. Семендяев, Справочник по математике для инженеров и учащихся втузов, (Совместное издание издательств "Тойбнер", Лейпциг, и "Наука", Москва, 1981), сс. 169-170.
  23. P. B. Canham, Journal of Theoretical Biology, 26, 61 (1970). doi: 10.1016/S0022-5193(70)80032-7
  24. T. Shiga, N. Maeda, and K. Kon, Crit. Rev. in Oncology/Hematology, 10 (1), 9 (1990). doi: 10.1016/1040-8428(90)90020-S
  25. T. Tajikawa, Y. Imamura, T. Ohno, et al., J. Biorheology, 27, 1 (2013). doi: 10.1007/s12573-012-0052-9
  26. T. W. Secomb, Annu. Rev. Fluid Mechanics, 49, 443 (2017). doi: 10.1146/annurev-fluid-010816-060302
  27. В. Л. Воейков, Успехи физиол. наук, 29, 55 (1998).
  28. A. Rabe, A. Kihm, A. Darras, et al., Biomolecules, 11, 1 (2021). doi: 10.3390/biom11050727
  29. Yu. I. Gurfinkel, O. A. Korol, and G. E. Kufal, SPIE, 3260, 232 (1998). doi: 10.1117/12.307096
  30. I. Cicha, Y. Suzuki, N. Tateishi, and N. Maeda, Am. J. Physiol. - Heart and Circulatory Physiology, 284 (6), H2335 (2003). doi: 10.1152/ajpheart.01030.2002
  31. Y. Arbel, S. Banai, J. Benhorin, et al., Int. J. Cardiol., 154 (3), 322 (2012). doi: 10.1016/j.ijcard.2011.06.116
  32. M. A. Elblbesy and M. E. Moustafa, Int. J. Biomed. Sci., 13 (2), 113 (2017).
  33. R. N. Pittman, Microcirculation, 20 (2), 117 (2013). doi: 10.1111/micc.12017
  34. A. E. Lugovtsov, Y. I. Gurfinkel, P. B. Ermolinskiy, et al., in Biomedical Photonics for Diabetes Research, Ed. by A. V. Dunaev and V. V. Tuchin (CRC Press, London, New York, 2023), pp. 57-79. DOI: 10.1201/ 9781003112099
  35. E. Hysi, R. K. Saha, and M. C. Kolios, J. Biomed. Optics, 17 (12), 125006 (2012). doi: 10.1117/1.JBO.17.12.125006
  36. T. H. Bok, E. Hysi, and M. C. Kolios, Biomed. Optics Express, 7 (7), 2769 (2016). doi: 10.1364/BOE.7.002769

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies