High- dose nitric oxide gas inhalation for HIV infection

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Therapeutic effect of high-dose nitric oxide gas inhalation (NO concentration was not less than than 1000 ppm) on two patients with HIV infection was shown. Inhaled NO therapy led to a rapid decrease in viral load to an undetectable level which was persistent even after analytical treatment interruption. It is suggested that HIV infection is controlled by nitrosonium (NO+) cations, the oxidized form of neutral NO molecules that enter the blood. Subsequent conversion of NO+ cations into nitrite anions due to a reaction with hydroxyl ions is inhibited by the binding of NO+ cations and chloride anions leading to the formation of nitrosyl chloride in the blood. Further entry of nitrosyl chloride into cells and tissues ensures NO+ transfer to them. Interaction between nitrosyl chloride and thiols requires the appearance of relevant S-nitrosothiols as NO donors in cells and tissues.

Sobre autores

A. Pekshev

N.E. Bauman Moscow State Technical University

Moscow, Russia

A. Vagapov

N.E. Bauman Moscow State Technical University

Moscow, Russia

N. Sharapov

N.E. Bauman Moscow State Technical University

Moscow, Russia

A. Vanin

N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: vanin.dnic@gmail.com
Moscow, Russia

Bibliografia

  1. М. Р. Бобкова, ВИЧ-инфекция и иммуносупрессии, 12 (1), 22 (2020).
  2. S. Kramer-Hammerle, I. Rothenaigner, H. Wolff, et al., Virus Res., 111, 194 (2005).
  3. T.-W. Chun, D. C. Nickle, J. S. Justement, et al., J. Infect. Dis., 197 (5), 714 (2008).
  4. S. Castro-Gonzalez, M. Colomer-Lluch, and R. Serra-Moreno, AIDS Res. Human Retroviruses, 34 (9), 739 (2018).
  5. C. S. Reiss and T. Komatsu, J. Virol., 72 (6), 4547 (1998).
  6. M. R. Garren, M. Ashcraft, Y. Qian, et al., Appl. Mater. Today, 22, 100887 (2021).
  7. F. Lisi, A. N. Zelikin, and R. Chandrawati, Adv. Sci., 8 (7), 2003895 (2021).
  8. F. Sodano, E. Gazzano, R. Fruttero, et al., Molecules, 27, 2337 (2022).
  9. T. Persichini, M. Colasanti, M. Fraziano, et al., Biochem. Biophys. Res.Commun., 254, 200 (1999).
  10. J. B. Mannick, J. S. Stamler, E. Teng, et al., J. Acquir. Immune Defic. Syndr., 22 (1), 1 (1999).
  11. T. Persichini, P. Ascenzi, V. Colizzi, et al., Int. J. Mol. Med., 4, 365 (1999).
  12. J. L. Jimenez, J. Gonzalez-Nicolas, S. Alvarez, et al., J. Virol., 75 (10), 4655 (2001).
  13. D. Torre, A. Pugliese, and F. Speranza, Lancet Infect. Dis., 2, 273 (2002).
  14. Е. В. Печёнкин, А. В. Коврижкин, А. В. Пекшев и др., Биофизика, 67 (6), 1251 (2022).
  15. А. Ф. Ванин, А. В. Пекшев, А. Б. Вагапов и др., Биофизика, 66 (1), 183 (2021).
  16. А. Ф. Ванин, А. В. Пекшев, Е. В. Печёнкин и др., Биофизика, 68 (1), 142 (2023).
  17. J. Z. Li, B. Etemad, H. Ahmed, et al., AIDS, 30 (3), 343 (2016).
  18. S. Khan, M. Kayahara, U. Joashi, et al., J. Cell Sci., 110, 2315 (1997).
  19. А. Ф. Ванин, А. А. Абрамов, А. Б. Вагапов и др., Биофизика, 68 (6) (2023) (в печати).
  20. А. В. Шиповалов, А. Ф. Ванин, О. В. Пьянков и др., Биофизика, 67 (5), 969 (2022).
  21. A. F. Vanin, V. A. Tronov, and R. R. Borodulin, Cell Biochem. Biophys., 79, 93 (2021).
  22. A. L. Kleschyov, S. Strand, S. Schmitt, et al., Free Rad. Biol. Med., 40, 1340 (2006).

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies