Genetic determinants of flax genome integrity

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Recent advances in high-throughput sequencing methods have enabled development of an innovative approach to evaluation of genome stability and integrity. The depth of the coverage signal at a particular location of the genome may indicate the loss of DNA integrity in the region. In this work, the previously developed metric of local genome integrity that estimates the uniformity of coverage signal is considered a quantitative trait and a search for genetic variants associated with the uniformity of coverage signal in flax genome is performed. In particular, quantitative trait locus (xQTL) analyses (i.e., x Quantitiave Trait Loci, where x is the designation of an arbitrary quantitative characteristic associated with a particular genome region; for example, the level of gene expression, the degree of ribosome coverage, etc.) have been applied to identify genomic regions that most likely contribute to loss of genome integrity and are, probably, involved in the maintenance of genome stability. The analysis carried out using information on whole-genome sequence assembly of 100 flax samples enabled identification of genes potentially implicated in genome integrity maintenance in flax and, possibly, in plants in general and also revealed novel processes associated with the maintenance of genome integrity.

Sobre autores

A. Kanapin

St. Petersburg State University

St. Petersburg, Russia

A. Samsonova

St. Petersburg State University

Email: a.samsonova@spbu.ru
St. Petersburg, Russia

Bibliografia

  1. Z. N. Lye, M. D. Purugganan, Trends Plant Sci., 24, 352 (2019).
  2. Y. Yuan, P. E. Bayer, J. Batley, and D. Edwards, Plant Biotechnol. J., 19, 2153 (2021).
  3. S. Nik-Zainal, Genome Med., 11, 1 (2019).
  4. A. Janssen, S. U. Colmenares, and G. H. Karpen, Annu. Rev. Cell Dev. Biol., 34, 265 (2018).
  5. S. S. Ho, A. E. Urban, and R. E. Mills, Nat. Rev. Genet., 1 (2019).
  6. E. M. Kass, M. E. Moynahan, and M. Jasin, MOL-CEL, 62, 777 (2016).
  7. N. Andor, C. C. Maley, and H. P. Ji, Cancer Res., 77, 2179 (2017).
  8. A. Dolatabadian, D. A. Patel, D. Edwards, and J. Batley, Theor. Appl. Genet., 130, 2479 (2017).
  9. A. Abyzov, A. E. Urban, M. Snyder, and M. Gerstein, Genome Res., 21, 974 (2011).
  10. V. Boeva, et al., Bioinformatics, 28, 423 (2011).
  11. A. Samsonova, et al., Int. J. Mol. Sci., 22, 2665 (2021).
  12. D. Arends, et al., Bioinformatics, 28, 1042 (2012).
  13. B. Ng, et al., Nat. Neurosci., 20, 1 (2017).
  14. Y. Ma, H. Klein, and P. L. D. Jager, Brain Pathol., 30, 984 (2020).
  15. М. А. Дук, А. А. Канапин, А. А. Самсонова и др., Биофизика, 67, 234 (2022).
  16. H. Li and R. Durbin, Bioinformatics, 26, 589 (2010).
  17. D. Tello, et al., Bioinformatics, 35, 4716 (2019).
  18. O. Stegle, L. Parts, M. Piipari, et al., Nat. Protoc., 7, 500 (2012).
  19. H. Ongen, et al., Nat.Commun., 8, 1 (2017).
  20. H. Fang, B. Knezevic, K. L. Burnham, and J. C. Knight, Genome Med., 8, 1 (2016).
  21. J. Mistry, et al., Nucl. Acids Res., 49, gkaa913 (2020).
  22. J.-M. Zhou and Y. Zhang, Cell, 181, 978 (2020).
  23. D. Lapin, O. Johanndrees, Z. Wu, et al., Plant Cell, 34, 1479 (2022).
  24. S. J. Riedl, W. Li, Y. Chao, et al., Nature, 434, 926 (2005).
  25. N. Boes, K. Schreiber, E. Hartig, et al., J. Bacteriol., 188, 6529 (2006).
  26. D. D. Leipe, Y. I. Wolf, E. V. Koonin, and L. Aravind, J. Mol. Biol., 317, 41 (2002).

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies