Effects of Catechins on the Formation of Collagen Fibrils in vitro

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Some aspects of therapeutic action of catechins are associated with their effects on the deposition of collagen fibrils in tissues. It is assumed that this process is controlled through signaling and regulatory pathways in cells that catechins affect, however, the direct interactions of polyphenols with structural proteins cannot be excluded. The present work investigates the direct effect of (+)-catechin and epigallocatechin gallate on the formation of collagen fibrils in vitro. Turbidimetty, differential scanning calorimetry and transmission electron microscope data showed that (+)-catechin accelerates the formation of type I collagen fibrils, and the resulting fibrils have a protein-specific structure and thermal stability, while epigallocatechin gallate at a concentration of 10 μM inhibits fibrillogenesis. The results obtained expand our understanding of the potential mechanisms of therapeutic action of catechins demonstrating the possibility of a direct interaction of (+)- catechin and epigallocatechin gallate with collagen monomers and collagen fibrils and these findings may be useful in the development of new drugs containing these plant polyphenols or their synthetic analogues.

Авторлар туралы

Yu. Tarahovsky

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences; Institute of Cell Biophysics, Russian Academy of Sciences

Pushchino, Russia; Pushchino, Russia

S. Gaidin

Institute of Cell Biophysics, Russian Academy of Sciences

Email: ser-gajdin@yandex.ru
Pushchino, Russia

Yu. Kim

Institute of Cell Biophysics, Russian Academy of Sciences

Pushchino, Russia

Әдебиет тізімі

  1. Rathod N. B., Elabed N., Punia S., Ozogul F., Kim S.-K., and Rocha J. M. Recent developments in polyphenol applications on human health: a review with current knowledge. Plants, 12 (6), 1217 (2023). doi: 10.3390/plants12061217
  2. Buljeta I., Pichler A., Šimunović J., and Kopjar M. Beneficial effects of red wine polyphenols on human health: comprehensive review. Curr. Issues Mol. Biol., 45 (2), 782–798 (2023). doi: 10.3390/cimb45020052
  3. Bakun P., Mlynarczyk D. T., Koczorowski T., CerbinKoczorowska M., Piwowarczyk L., Kolasiński E., Stawny M., Kuźmińska J., Jelińska A., and Goslinski T. Tea-break with epigallocatechin gallate derivatives −Powerful polyphenols of great potential for medicine. Eur. J. Med. Chem., 261, 115820 (2023). doi: 10.1016/j.ejmech.2023.115820
  4. Azami S. and Forouzanfar F. Therapeutic potentialities of green tea (Camellia sinensis) in ischemic stroke: biochemical and molecular evidence. Metab. Brain Dis., 39 (2), 347–357 (2024). doi: 10.1007/s11011-023-01294-4
  5. Li X. X., Liu C., Dong S. L., Ou C. S., Lu J. L., Ye J. H., Liang Y. R., and Zheng X. Q. Anticarcinogenic potentials of tea catechins. Front Nutr., 9, 1060783 (2022). doi: 10.3389/fnut.2022.1060783
  6. Suganuma M., Saha A., and Fujiki H. New cancer treatment strategy using combination of green tea catechins and anticancer drugs. Cancer Sci., 102 (2), 317–323 (2011). doi: 10.1111/j.1349-7006.2010.01805.x
  7. Kim A., Chiu A., Barone M. K., Avino D., Wang F., Coleman C. I., and Phung O. J. Green tea catechins decrease total and low-density lipoprotein cholesterol: a systematic review and meta-analysis. J. Am. Diet. Assoc., 111 (11), 1720–1729 (2011). doi: 10.1016/j.jada.2011.08.009
  8. Lange K. W. Tea in cardiovascular health and disease: a critical appraisal of the evidence. Food Sci. Hum. Wellness, 11 (3), 445–454 (2022).
  9. Mandel S. A., Amit T., Weinreb O., Reznichenko L., and Youdim M. B. Simultaneous manipulation of multiple brain targets by green tea catechins: a potential neuroprotective strategy for Alzheimer and Parkinson diseases. CNS Neurosci. Ther., 14 (4), 352–365 (2008). doi: 10.1111/j.1755-5949.2008.00060.x
  10. Prasanth M. I., Sivamaruthi B. S., Chaiyasut C., and Tencomnao T. A review of the role of green tea (camellia sinensis) in antiphotoaging, stress resistance, neuroprotection, and autophagy. Nutrients, 11 (2), 474 (2019). doi: 10.3390/nu11020474
  11. Kim Y. A., Tarahovsky Y. S., Gaidin S. G., Yagolnik E. A., and Muzafarov E. N. Flavonoids determine the rate of fibrillogenesis and structure of collagen type I fibrils in vitro. Int. J. Biol. Macromol., 104, 631–637 (2017). doi: 10.1016/j.ijbiomac.2017.06.070
  12. Tarahovsky Y. S., Selezneva I. I., Vasilieva N. A., Egorochkin M. A., and Kim Y. A. (2007). Acceleration of fibril formation and thermal stabilization of collagen fibrils in the presence of taxifolin (dihydroquercetin). Bull. Exp. Biol. Med., 144, 791–794 (2007). doi: 10.1007/s10517-007-0433-z
  13. Smith J. W. Molecular pattern in native collagen. Nature, 219, 157–158 (1968). doi: 10.1038/219157a0
  14. Acil Y. and Muller P. K. Rapid method for the isolation of the mature collagen cross-links, hydroxylysylpyridinoline and lysylpyridinoline. J. Chromatogr. A, 664, 183–188 (1994). doi: 10.1016/0021-9673(94)87006-3
  15. Silver F. H. and Trelstad R. L. Linear aggregation and the turbidimetric lag phase: type I collagen fibrillogenesis in vitro. J. Theor. Biol., 81, 515–526 (1979). doi: 10.1016/0022-5193(79)90049-3
  16. Tiktopulo E. I. and Kajava A. V. Denaturation of type I collagen fibrils is an endothermic process accompanied by a noticeable change in the partial heat capacity. Biochemistry, 37 (22), 8147–8152 (1998). doi: 10.1021/bi980360n
  17. Williams B. R., Gelman R. A., Poppke D. C., and Piez K. A. Collagen fibril formation. Optimal in vitro conditions and preliminary kinetic results. J. Biol. Chem., 253, 6578–6585 (1978).
  18. Bozec L., van der Heijden G., and Horton M. Collagen fibrils: nanoscale ropes. Biophys. J., 92 (1), 70–75 (2007). doi: 10.1529/biophysj.106.085704
  19. Darvish D. M. Collagen fibril formation in vitro: From origin to opportunities. Mater. Today Bio., 15, 100322 (2022). doi: 10.1016/j.mtbio.2022.100322
  20. Chapman J. A., Tzaphlidou M., Meek K. M., and Kadler K. E. The collagen fibril – a model system for studying the staining and fixation of a protein. Electron Microsc. Rev., 3 (1), 143–182 (1990). doi: 10.1016/0892-0354(90)90018-n
  21. Acil Y., Mobasseri A. E., Warnke P. H., Terheyden H., Wiltfang J., and Springer I. Detection of mature collagen in human dental enamel. Calcif. Tissue Int., 76 (2), 121–126 (2005). doi: 10.1007/s00223-004-0122-0
  22. Chen F., Qin J., Wu P., Gao W., and Sun G. Glucoseresponsive antioxidant hydrogel accelerates diabetic wound healing. Adv. Healthc. Mater., 12 (21), e2300074 (2023). doi: 10.1002/adhm.202300074
  23. Connolly K., Batacan R., Jackson D., and Fenning A. S. Effects of epicatechin on cardiovascular function in middle-aged diet-induced obese rat models of metabolic syndrome. Br. J. Nutr., 131 (4), 593–605 (2024). doi: 10.1017/S000711452300209X
  24. Zhou J., Lei Y., Chen J., and Zhou X. Potential ameliorative effects of epigallocatechin-3-gallate against testosteroneinduced benign prostatic hyperplasia and fibrosis in rats. Int. Immunopharmacol., 64, 162–169 (2018). doi: 10.1016/j.intimp.2018.08.038
  25. George J., Tsuchishima M., and Tsutsumi M. Epigallocatechin3-gallate inhibits osteopontin expression and prevents experimentally induced hepatic fibrosis. Biomed. Pharmacother., 151, 113111 (2022). doi: 10.1016/j.biopha.2022.113111
  26. Zhongyin Z., Wei W., Juan X., and Guohua F. Epigallocatechin gallate relieved PM2.5-induced lung fibrosis by inhibiting oxidative damage and epithelial-mesenchymal transition through AKT/mTOR pathway. Oxid. Med. Cell Longev., 2022, 7291774 (2022). doi: 10.1155/2022/7291774
  27. Song Y., Wang T., Yang L., Wu J., Chen L., Fan X., Zhang Z., Yang Q., Yu Z., and Song B. EGCG inhibits hypertrophic scar formation in a rabbit ear model. J. Cosmet. Dermatol., 22, 1382–1391 (2023). doi: 10.1111/jocd.15587
  28. Syed F., Bagabir R. A., Paus R., and Bayat A. Ex vivo evaluation of antifibrotic compounds in skin scarring: EGCG and silencing of PAI-1 independently inhibit growth and induce keloid shrinkage. Lab. Invest., 93 (8), 946–960 (2013). doi: 10.1038/labinvest.2013.82
  29. Qiao Y., Zhang Q., Wang Q., Lin J., Wang J., Li Y., and Wang L. Synergistic anti-inflammatory coating “Zipped Up” on polypropylene hernia mesh. ACS Appl. Mater. Interfaces, 13 (30), 35456–35468 (2021). doi: 10.1021/acsami.1c09089
  30. Zang G., Chen Y., Guo G., Wan A., Li B., and Wang Z. Protective effect of CD137 deficiency against postinfarction cardiac fibrosis and adverse cardiac remodeling by ERK1/2 signaling pathways. J. Cardiovasc. Pharmacol., 83 (5), 446–456 (2024). doi: 10.1097/FJC.0000000000001549
  31. Guo H., Hu Z., Yang X., Yuan Z., Wang M., Chen C., Xie L., Gao Y., Li W., Bai Y., and Lin C. Smad4 regulates TGF-β1-mediated hedgehog activation to promote epithelial-to-mesenchymal transition in pancreatic cancer cells by suppressing Gli1 activity. Comput. Struct. Biotechnol. J., 23, 1189–1200 (2024). doi: 10.1016/j.csbj.2024.03.010
  32. Huang X., Zhang S., Fu W., Wang L., Liu Zh., Tang Y., Gao W., and Tang B. In situ imaging of GGT and HOBr-triggered atherosclerotic plaque rupture via activating the RunX2/Col IV signaling pathway. Anal. Chem., 96 (10), 4138–4145 (2024). doi: 10.1021/acs.analchem.3c05073
  33. Reddy V. C., Vidya Sagar G. V., Sreeramulu D., Venu L., and Raghunath M. Addition of milk does not alter the antioxidant activity of black tea. Ann. Nutr. Metab., 49 (3), 189–195 (2005). doi: 10.1159/000087071

© Russian Academy of Sciences, 2024

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>