1H-NMR Spectroscopy of Blood Plasma for Detection of Changes in Metabolism during the Development of Sarcoma M-1 in Rats

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An assessment of the effectiveness of 1H NMR-based metabolomic analysis for the detection of metabolic changes during carcinogenesis was made based on a comparison of the quantitative composition of metabolites in the blood plasma of rats for healthy rats and rats receiving M-1 sarcoma transplantation. Plasma was collected from the rats under study on day 12 and day 36 after sarcoma transplantation to identify metabolites associated with tumor development. Analysis of NMR spectra using multivariate statistical methods showed differences in the composition of metabolites for the groups of animals under study already on day 12 after sarcoma transplantation; on day 36 the differences were significant. 23 metabolites were quantified. On day 12, only the lactate and allantoin levels were significantly different between the groups, while on day 36, the levels of 9 metabolites were different in rats in all groups. All of the metabolites identified are involved in cancer metabolism, which makes 1H NMR spectroscopy a promising method for cancer diagnosis.

About the authors

A. Y Egorov

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Russia

A. S Bykov

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Russia

T. I Ponomareva

Branch of M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Pushchino, Russia

M. V Molchanov

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Russia

N. M Pankratova

Institute of Mathematical Problems of Biology, Russian Academy of Sciences − Branch of M.V. Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

Pushchino, Russia

A. N Pankratov

Institute of Mathematical Problems of Biology, Russian Academy of Sciences − Branch of M.V. Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

Pushchino, Russia

A. G Arakelyan

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Russia

S. N Koryakin

A.F. Tsyba Medical Radiological Research Centre − Branch of the «National Medical Research Radiological Centre», Ministry of Health of the Russian Federation

Obninsk, Russia

M. A Timchenko

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: maria_timchenko@mail.ru
Pushchino, Russia

References

  1. Vignoli A., Ghini V., Meoni G., Licari C., Takis P. G., Tenori L., Turano P., and Luchinat C. High-throughput metabolomics by 1D NMR. Angewandte Chemie (Int. ed. in English), 58 (4), 968–994 (2019). doi: 10.1002/anie.201804736
  2. Larkin J. R., Anthony S., Johanssen V. A., Yeo T., Sealey M., Yates A. G., Smith C. F., Claridge T. D. W., Nicholson B. D., Moreland J. A., Gleeson F., Sibson N. R., Anthony D. C., and Probert F. Metabolomic biomarkers in blood samples identify cancers in a mixed population of patients with nonspecific symptoms. Clin. Cancer Res., 28 (8), 1651–1661 (2022). doi: 10.1158/1078-0432.CCR-21-2855
  3. Casadei-Gardini A., Del Coco L., Marisi G., Conti F., Rovesti G., Ulivi P., Canale M., Frassineti G. L., Foschi F. G., Longo S., Fanizzi F. P., and Giudetti A. M. 1H-NMR based serum metabolomics highlights different specific biomarkers between early and advanced hepatocellular carcinoma stages. Cancers, 12 (1), 241 (2020). doi: 10.3390/cancers12010241
  4. Singh A., Prakash V., Gupta N., Kumar A., Kant R., and Kumar D. Serum metabolic disturbances in lung cancer investigated through an elaborative NMR-based serum metabolomics approach. ACS Omega, 7 (6), 5510–5520 (2022). doi: 10.1021/acsomega.1c06941
  5. Florou V., Nascimento A. G., Gulia A., and de Lima Lopes G. Jr. Global health perspective in sarcomas and other rare cancers. American Society of Clinical Oncology Educational Book (Am. Soc. of Clin. Oncol. Annu. Meet.), 38, 916–924 (2018). doi: 10.1200/EDBK_200589
  6. Casali P. G., Abecassis N., Aro H. T., Baue S., Biagini R., Bielack S., Bonvalot S., Boukovinas I., Bovee J. V. M. G., Brodowicz T., Broto J. M., Buonadonna A., De Alava E., Dei Tos A. P., Del Muro X. G., Dileo P., Eriksson M., Fedenko A., Ferraresi V., Ferrari A., Ferrari S., Frezza A. M., Gasperoni S., Gelderblom H., Gil T., Grignani G., Gronchi A., Haas R. L., Hassan B., Hohenberger P., Issels R., Joensuu H., Jones R. L., Judson I., Jutte P., Kaal S., Kasper B., Kopeckova K., Krakorova D. A., Le Cesne A., Lugowska I., Merimsky O., Montemurro M., Pantaleo M.A., Piana R., Picci P., Piperno-Neumann S., Pousa A.L., Reichardt P., Robinson M. H., Rutkowski P., Safwat A. A., Schoffski P., Sleijfer S., Stacchiotti S., Sundby Hall K., Unk M., Van Coevorden F., van der Graaf W. T. A., Whelan J., Wardelmann E., Zaikova O., and Blay J. Y. ESMO Guidelines Committee and EURACAN. Soft tissue and visceral sarcomas: ESMO-EURACAN clinical practice guidelines for diagnosis, treatment and follow-up. Annals Oncol., 29 (Suppl. 4), iv51–iv67 (2018). doi: 10.1093/annonc/mdy096
  7. Chen K., Zhu C., Cai M., Fu D., Cheng B., Cai Z., Li G., and Liu J. Integrative metabolome and transcriptome profiling reveals discordant glycolysis process between osteosarcoma and normal osteoblastic cells. J. Cancer Res. Clin. Oncol., 140 (10), 1715–1721 (2014). doi: 10.1007/s00432-014-1719-y
  8. Das S., Chatterjee N., Bose D., Banerjee S., Jha T., and Saha K. D. Leishmanial sphingolipid induces apoptosis in Sarcoma 180 cancer cells through regulation of tumour growth via angiogenic switchover. Tumour Biol., 36 (4), 3109–3118 (2015). doi: 10.1007/s13277-014-2947-0
  9. Lou S., Balluff B., Cleven A. H. G., Bovee J. V. M. G., and McDonnell L. A. Prognostic metabolite biomarkers for soft tissue sarcomas discovered by mass spectrometry imaging. J. Am. Soc. Mass Spectrometry, 28 (2), 376–383 (2017). doi: 10.1007/s13361-016-1544-4
  10. Shungu D. C., Bhujwalla Z. M., Li S. J., Rose L. M., Wehrle J. P., and Glickson J. D. Determination of absolute phosphate metabolite concentrations in RIF-1 tumors in vivo by 31P-1H-2H NMR spectroscopy using water as an internal intensity reference. Magnetic Resonance in Medicine, 28 (1), 105–121 (1992). doi: 10.1002/mrm.1910280111
  11. Zhang Z., Qiu Y., Hua Y., Wang Y., Chen T., Zhao A., Chi Y., Pan L., Hu S., Li J., Yang C., Li G., Sun W., Cai Z., and Jia W. Serum and urinary metabonomic study of human osteosarcoma. J. Proteome Res., 9 (9), 4861–4868 (2010). doi: 10.1021/pr100480r
  12. Lopez-Garrido L., Banuelos-Hernandez A. E., PerezHernandez E., Tecualt-Gomez R., Quiroz-Williams J., Ariza-Castolo A., Becerra-Martinez E., and PerezHernandez N. Metabolic profiling of serum in patients with cartilage tumours using 1H-NMR spectroscopy: A pilot study. Magnetic Resonance in Chemistry, 58 (1), 65–76 (2020). doi: 10.1002/mrc.4925
  13. Южаков В. В., Севанькаева Л. Е., Ульяненко С. Е., Яковлева Н. Д., Кузнецова М. Н., Цыганова М. Г., Фомина Н. К., Ингель И. Э. и Лычагин А. А. Эффективность фракционированного воздействия γизлучения и быстрых нейтронов на саркому М-1. Радиац. биология. Радиоэкология, 53 (3), 267-279 (2013). doi: 10.7868/S0869803113020148, EDN: QBHSLV
  14. Kimhofer T. Metabom8 (Version 1.0.0) [Computer software] (2021). URL: https://github.com/tkimhofer/metabom8 (дата обращения: 10.06.2023).
  15. Dieterle F., Ross A., Schlotterbeck G., and Senn H. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal. Chem., 78 (13), 4281–4290 (2006). doi: 10.1021/ac051632c
  16. Trygg J., Holmes E., and Lundstedt T. Chemometrics in metabonomics. J. Proteome Res., 6 (2), 469–479 (2007). doi: 10.1021/pr060594q
  17. Metz C. E. Basic principles of ROC analysis. Seminars in Nuclear Medicine, 8 (4), 283–298 (1978). doi: 10.1016/s0001-2998(78)80014-2
  18. Esperanca-Martins M., Fernandes I., Soares do Brito J., Macedo D., Vasques H., Serafim T., Costa L., and Dias S. Sarcoma metabolomics: current horizons and future perspectives. Cells, 10 (6), 1432 (2021). doi: 10.3390/cells10061432
  19. Lai H. S., Lee J. C., Lee P. H., Wang S. T., and ChenW. J. Plasma free amino acid profile in cancer patients. Seminars in Cancer Biology, 15 (4), 267–276 (2005). doi: 10.1016/j.semcancer.2005.04.003
  20. Altman B. J., Stine Z. E., and Dang C. V. From Krebs to clinic: glutamine metabolism to cancer therapy. Nature Reviews. Cancer, 16 (10), 619–634 (2016). doi: 10.1038/nrc.2016.71
  21. Xie H., Zhang K., Wei Y., Ruan G., Zhang H., Li S., Song Y., Chen P., Liu L., Wang B., and Shi H. The association of serum betaine concentrations with the risk of new-onset cancers: results from two independent nested case-control studies. Nutrition & Metabolism, 20 (1), 46 (2023). doi: 10.1186/s12986-023-00755-y
  22. Gruber J., Tang S. Y., Jenner A. M., Mudway I., Blomberg A., Behndig A., Kasiman K., Lee C. Y., Seet R. C., Zhang W., Chen C., Kelly F. J., and Halliwell B. Allantoin in human plasma, serum, and nasallining fluids as a biomarker of oxidative stress: avoiding artifacts and establishing real in vivo concentrations. Antioxidants & Redox Signaling, 11 (8), 1767–1776 (2009). doi: 10.1089/ars.2008.2364

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies