A Compact Terahertz Radiation Source/Detector Based on a Periodically Corrugated Waveguide
- Authors: Shchurova L.Y.1, Namiot V.A2
-
Affiliations:
- P.N. Lebedev Physical Institute, Russian Academy of Sciences
- Institute of Nuclear Physics, Moscow State University
- Issue: Vol 70, No 6 (2025)
- Pages: 1143-1155
- Section: Complex systems biophysics
- URL: https://journals.rcsi.science/0006-3029/article/view/354276
- DOI: https://doi.org/10.31857/S0006302925060111
- ID: 354276
Cite item
Abstract
About the authors
L. Yu Shchurova
P.N. Lebedev Physical Institute, Russian Academy of Sciences
Email: ljusia@gmail.com
Moscow, Russia
V. A Namiot
Institute of Nuclear Physics, Moscow State UniversityMoscow, Russia
References
- Chen X., Lindley-Hatcher H., Stantchev R., Wang J., K. Li, Serrano A. H., Taylor Z. D., Castro-Camus E., and Pickwell-MacPherson E. Terahertz (THz) biophotonics technology: Instrumentation, techniques, and biomedical applications. Chem. Phys. Rev., 3 (1), 011311 (2022). doi: 10.1063/5.0068979
- Neu J., Stone E. A., Spies J. A., Storch G., Hatano A. S., Mercado B. Q., Miller S. J., and Schmuttenmaer C. A. Terahertz spectroscopy of tetrameric peptides. J. Phys. Chem. Lett., 10 (10), 2624–2628 (2019). doi: 10.1021/acs.jpclett.9b01091
- Glancy P. Concentration-dependent effects on fully hydrated DNA at terahertz frequencies. J. Biol. Phys., 41 (3), 247–256 (2015). doi: 10.1007/s10867-015-9377-0
- Fu X., Liu Y., Chen Q., and Fu Y. Applications of terahertz spectroscopy in the detection and recognition of substances. Front. Phys., 10, 869537 (2022). doi: 10.3389/fphy.2022.869537
- Conti Nibali V. and Havenith M. New insights into the role of water in biological function: Studying solvated biomolecules using terahertz absorption spectroscopy in conjunction with molecular dynamics simulations. J. Am. Chem. Soc., 136 (37), 12800–12807 (2014).
- Hishida M. and Tanaka K. Long-range hydration effect of lipid membrane studied by terahertz time-domain spectroscopy. Phys. Rev. Lett., 106, 158102 (2011). doi: 10.1103/PhysRevLett.106.158102
- Nikitkina A. I., Bikmulina P. Y., Gafarova E. R.., Kosheleva N V., Efremov Y. M., Bezrukov E. A., Butnaru D. V., Dolganova I. N., Chernomyrdin N. V., Cherkasova O. P., Gavdush A. A., and Timashev P. S. Terahertz radiation and the skin: A review. J. Biomed. Opt., 26 (4), 043005 (2021). doi: 10.1117/1.JBO.26.4.043005J
- Qi X., Bertling K., Torniainen J., Kong F., Gillespie T., Primiero C., Stark M. S., Dean P., Indjin D., Li L. H., Linfield E. H., Davies A. G., Brunig M., Mills T., Rosendahl C., Soyer H. P., and Rakić A. D. Terahertz in vivo imaging of human skin: Toward detection of abnormal skin pathologies. APL Bioeng., 8 (1), 016117 (2024). doi: 10.1063/5.0190573
- Wallace V. P., Fitzgerald A. J., Pickwell E., Pye R. J., Taday P. F., Flanagan N., and Ha T. Terahertz pulsed spectroscopy of human Basal cell carcinoma. Appl. Spectrosc., 60 (10), 1127–1133 (2006). doi: 10.1366/000370206778664635
- Zaytsev K. I., Chernomyrdin N. V., Kudrin K. G., and Gavdush A. In vivo terahertz pulsed spectroscopy of dysplastic and non-dysplastic skin nevi. J. Phys. Conf. Ser., 735 (1), 012076 (2016). doi: 10.1088/1742-6596/735/1/012076
- Ji Y. B., Oh S. J., Kang S.-G., Heo J., Kim S.-H., Choi Y., Song S., Son H. Y., Kim S. H., Lee J. H., Haam S. J., HuhY. M., Chang J. H., Joo Ch., and Suh J.-S. Terahertz reflectometry imaging for low and high grade gliomas. Sci. Rep., 6, 36040 (2016). doi: 10.1038/srep36040
- Wu L., Xu D., Wang Y., Liao B., Jiang Z., Zhao L., Sun Z., Wu N., Chen T., Feng H., and Yao J. Study of in vivo brain glioma in a mouse model using continuouswave terahertz reflection imaging. Biomed. Opt. Express, 10 (8), 3953–3962 (2019). doi: 10.1364/BOE.10.003953
- Smolyanskaya O. A., Chernomyrdin N. V., Konovko A. A., Zaytsev K. I., Ozheredov I. A., Cherkasova O. P., Nazarov M. M., Guillet J.-P., Kozlov S. A., Kistenev Yu. V., Coutaz J.-L., Mounaix P., Vaks V. L., Son J.-H., Cheon H., Wallace V. P., Feldman Yu., Popov I., Yaroslavsky A. N., Shkurinov A. P., and Tuchin V. V. Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids. Progr. Quantum Electronics, 62, 1–77 (2018). doi: 10.1016/j.pquantelec.2018.10.001
- Amini T., Jahangiri F., Ameri Z., Hemmatian M. A. A review of feasible applications of THz waves in medical diagnostics and treatments. J. Lasers Med. Sci., 12, e92 (2021). doi: 10.34172/jlms.2021.92
- Cheon H., Hur J. K., Hwang W., Yang H.-J., and Son J.-H. Epigenetic modification of gene expression in cancer cells by terahertz demethylation. Sci. Rep., 13, 4930 (2023). doi: 10.1038/s41598-023-31828-w
- Yin J., Wu K., Yu Y., Zhong Y., Song Z., Chang C., and Liu G. Terahertz photons inhibit cancer cells long term by suppressing nano telomerase activity. ACS Nano, 18 (6), 4796–4810 (2024). doi: 10.1021/acsnano.3c09216
- Movsisyan M., Al-Rossais A. A., Sayeed S., and Movsisyan G. Applications of terahertz waves in medical diagnostics: a literature review. Int. J. Commun. Med. Publ. Health, 11 (6), 2450–2454 (2024). doi: 10.18203/2394-6040.ijcmph20241512
- Zhang J., Li S., and Le W. Advances of terahertz technology in neuroscience: Current status and a future perspective. iScience, 24 (12), 103548 (2021). doi: 10.1016/j.isci.2021.103548
- Liu M., Liu J., Liang W., Lu B., Fan P., Song Y., Wang M., Wu Y., and Cai X. Recent advances and research progress on microsystems and bioeffects of terahertz neuromodulation. Microsystems & Nanoengineering, 9 (1), 143 (2023). doi: 10.1038/s41378-023-00612-1
- Wang Y., Xiong Y., Chen M., Liu F., He H., Ma Q., Gao P., Xiang G., and Zhang L. The biological effects of terahertz wave radiation-induced injury on neural stem cells. iScience, 26 (10), 107418 (2023). doi: 10.1016/j.isci.2023.107418
- Berry E., Walker G. C., Fitzgerald A. J., Zinov’ev N. N., Chamberlain M., Smye S. W., Miles R. E., and SmithM. A. Do in vivo terahertz imaging systems comply with safety guidelines? J. Laser Applications, 15 (3), 192–198 (2003). doi: 10.2351/1.1585079
- Namiot V. A. and Shchurova L. Yu., On the generation of electromagnetic waves in the terahertz frequency range. Phys. Lett. A, 375 (28–29), 2759–2766 (2011). doi: 10.1016/j.physleta.2011.05.061
- Shchurova L. Y, Namiot V.A., and Sarkisyan D. R. A compact source of terahertz radiation based on interaction of electrons in a quantum well with an electromagnetic wave of a corrugated waveguide. Biophysics, 60 (4), 647–655 (2015). doi: 10.1134/S0006350915040211
- Shchurova L. and Namiot V. A compact source of terahertz radiation based on an open corrugated waveguide. In: Advances in Condensed-Matter and Materials Physics Rudimentary Research to Topical Technologyon, Ed. by J. Thirumalai (IntechOpen, London, 2020), pp. 145–159. doi: 10.5772/intechopen.89692L
- Полуэктов Н. П. и Царьгородцев Ю. П. Экспериментальная технологическая установка с СВЧ. Приборы и техника эксперимента, № 4, 150 (1996).
- Liu K., Yang L., Wang M., and Yang S. Performance optimization of magnetostrictive guided wave sensor based on waveguide wire. AIP Advances, 9, 085216 (2019). doi: 10.1063/1.5119935
- Bolotovskii B. M. and Serov A. V. Special features of motion of particles in an electromagnetic wave. Phys. Usp. 46 (6) 645–655 (2003). doi: 10.1070/PU2003v046n06ABEH001349
- Андреев С. Н., Макаров В. П. и Рухадзе А. А. Средние силы, действующие на вещество в сильных лазерных п олях. Вопросы атомной науки и техники, 68, 240–244 (2010).
- Shin Y.-M., Baig A., Barnett L. R. , Tsai W. C., and Luhmann N. C. System design analysis of a 0.22-THz sheetbeam traveling-wave tube amplifier. IEEE Trans. Electron Devices, 59 (1), 234 (2012).
- Zhang L., Jiang Y., Lei W., Hu P., Guo J., Song R., Tang X., Ma G., Chen H., and Wei Y. A piecewise sine waveguide for terahertz traveling wave tube. Sci. Rep., 12, 10449 (2022). doi: 10.1038/s41598-022-14587-y
- Mineo M. and Paoloni C. Corrugated rectangular waveguide tunable backward wave oscillator for terahertz applications. IEEE Trans. Electron Devices, 57 (6), 1481–1484 (2010). doi: 10.1109/TED.2010.2045678
- Губанов В. А., Кострикин А. В. и Садовников А. В. Исследование распространения спиновых волн в системе гофрированный волновод – планарный волновод при изменении параметров модуляции. Физика твердого тела, 65 (7), 1171–1175 (2023). doi: 10.21883/FTT.2023.07.55840.43H
Supplementary files


