A Compact Terahertz Radiation Source/Detector Based on a Periodically Corrugated Waveguide

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Terahertz biophotonics opens up significant prospects for various biomedical applications. In this paper, we propose a scheme of a compact terahertz device, in which the effect of generation and amplification of terahertz radiation is achieved through the interaction of an electron beam, moving in a vacuum, with an electromagnetic wave of a corrugated waveguide. It is shown that both the generation and amplification mode and the detection mode of terahertz waves are possible in the considered device circuit.

Sobre autores

L. Shchurova

P.N. Lebedev Physical Institute, Russian Academy of Sciences

Email: ljusia@gmail.com
Moscow, Russia

V. Namiot

Institute of Nuclear Physics, Moscow State University

Moscow, Russia

Bibliografia

  1. Chen X., Lindley-Hatcher H., Stantchev R., Wang J., K. Li, Serrano A. H., Taylor Z. D., Castro-Camus E., and Pickwell-MacPherson E. Terahertz (THz) biophotonics technology: Instrumentation, techniques, and biomedical applications. Chem. Phys. Rev., 3 (1), 011311 (2022). doi: 10.1063/5.0068979
  2. Neu J., Stone E. A., Spies J. A., Storch G., Hatano A. S., Mercado B. Q., Miller S. J., and Schmuttenmaer C. A. Terahertz spectroscopy of tetrameric peptides. J. Phys. Chem. Lett., 10 (10), 2624–2628 (2019). doi: 10.1021/acs.jpclett.9b01091
  3. Glancy P. Concentration-dependent effects on fully hydrated DNA at terahertz frequencies. J. Biol. Phys., 41 (3), 247–256 (2015). doi: 10.1007/s10867-015-9377-0
  4. Fu X., Liu Y., Chen Q., and Fu Y. Applications of terahertz spectroscopy in the detection and recognition of substances. Front. Phys., 10, 869537 (2022). doi: 10.3389/fphy.2022.869537
  5. Conti Nibali V. and Havenith M. New insights into the role of water in biological function: Studying solvated biomolecules using terahertz absorption spectroscopy in conjunction with molecular dynamics simulations. J. Am. Chem. Soc., 136 (37), 12800–12807 (2014).
  6. Hishida M. and Tanaka K. Long-range hydration effect of lipid membrane studied by terahertz time-domain spectroscopy. Phys. Rev. Lett., 106, 158102 (2011). doi: 10.1103/PhysRevLett.106.158102
  7. Nikitkina A. I., Bikmulina P. Y., Gafarova E. R.., Kosheleva N V., Efremov Y. M., Bezrukov E. A., Butnaru D. V., Dolganova I. N., Chernomyrdin N. V., Cherkasova O. P., Gavdush A. A., and Timashev P. S. Terahertz radiation and the skin: A review. J. Biomed. Opt., 26 (4), 043005 (2021). doi: 10.1117/1.JBO.26.4.043005J
  8. Qi X., Bertling K., Torniainen J., Kong F., Gillespie T., Primiero C., Stark M. S., Dean P., Indjin D., Li L. H., Linfield E. H., Davies A. G., Brunig M., Mills T., Rosendahl C., Soyer H. P., and Rakić A. D. Terahertz in vivo imaging of human skin: Toward detection of abnormal skin pathologies. APL Bioeng., 8 (1), 016117 (2024). doi: 10.1063/5.0190573
  9. Wallace V. P., Fitzgerald A. J., Pickwell E., Pye R. J., Taday P. F., Flanagan N., and Ha T. Terahertz pulsed spectroscopy of human Basal cell carcinoma. Appl. Spectrosc., 60 (10), 1127–1133 (2006). doi: 10.1366/000370206778664635
  10. Zaytsev K. I., Chernomyrdin N. V., Kudrin K. G., and Gavdush A. In vivo terahertz pulsed spectroscopy of dysplastic and non-dysplastic skin nevi. J. Phys. Conf. Ser., 735 (1), 012076 (2016). doi: 10.1088/1742-6596/735/1/012076
  11. Ji Y. B., Oh S. J., Kang S.-G., Heo J., Kim S.-H., Choi Y., Song S., Son H. Y., Kim S. H., Lee J. H., Haam S. J., HuhY. M., Chang J. H., Joo Ch., and Suh J.-S. Terahertz reflectometry imaging for low and high grade gliomas. Sci. Rep., 6, 36040 (2016). doi: 10.1038/srep36040
  12. Wu L., Xu D., Wang Y., Liao B., Jiang Z., Zhao L., Sun Z., Wu N., Chen T., Feng H., and Yao J. Study of in vivo brain glioma in a mouse model using continuouswave terahertz reflection imaging. Biomed. Opt. Express, 10 (8), 3953–3962 (2019). doi: 10.1364/BOE.10.003953
  13. Smolyanskaya O. A., Chernomyrdin N. V., Konovko A. A., Zaytsev K. I., Ozheredov I. A., Cherkasova O. P., Nazarov M. M., Guillet J.-P., Kozlov S. A., Kistenev Yu. V., Coutaz J.-L., Mounaix P., Vaks V. L., Son J.-H., Cheon H., Wallace V. P., Feldman Yu., Popov I., Yaroslavsky A. N., Shkurinov A. P., and Tuchin V. V. Terahertz biophotonics as a tool for studies of dielectric and spectral properties of biological tissues and liquids. Progr. Quantum Electronics, 62, 1–77 (2018). doi: 10.1016/j.pquantelec.2018.10.001
  14. Amini T., Jahangiri F., Ameri Z., Hemmatian M. A. A review of feasible applications of THz waves in medical diagnostics and treatments. J. Lasers Med. Sci., 12, e92 (2021). doi: 10.34172/jlms.2021.92
  15. Cheon H., Hur J. K., Hwang W., Yang H.-J., and Son J.-H. Epigenetic modification of gene expression in cancer cells by terahertz demethylation. Sci. Rep., 13, 4930 (2023). doi: 10.1038/s41598-023-31828-w
  16. Yin J., Wu K., Yu Y., Zhong Y., Song Z., Chang C., and Liu G. Terahertz photons inhibit cancer cells long term by suppressing nano telomerase activity. ACS Nano, 18 (6), 4796–4810 (2024). doi: 10.1021/acsnano.3c09216
  17. Movsisyan M., Al-Rossais A. A., Sayeed S., and Movsisyan G. Applications of terahertz waves in medical diagnostics: a literature review. Int. J. Commun. Med. Publ. Health, 11 (6), 2450–2454 (2024). doi: 10.18203/2394-6040.ijcmph20241512
  18. Zhang J., Li S., and Le W. Advances of terahertz technology in neuroscience: Current status and a future perspective. iScience, 24 (12), 103548 (2021). doi: 10.1016/j.isci.2021.103548
  19. Liu M., Liu J., Liang W., Lu B., Fan P., Song Y., Wang M., Wu Y., and Cai X. Recent advances and research progress on microsystems and bioeffects of terahertz neuromodulation. Microsystems & Nanoengineering, 9 (1), 143 (2023). doi: 10.1038/s41378-023-00612-1
  20. Wang Y., Xiong Y., Chen M., Liu F., He H., Ma Q., Gao P., Xiang G., and Zhang L. The biological effects of terahertz wave radiation-induced injury on neural stem cells. iScience, 26 (10), 107418 (2023). doi: 10.1016/j.isci.2023.107418
  21. Berry E., Walker G. C., Fitzgerald A. J., Zinov’ev N. N., Chamberlain M., Smye S. W., Miles R. E., and SmithM. A. Do in vivo terahertz imaging systems comply with safety guidelines? J. Laser Applications, 15 (3), 192–198 (2003). doi: 10.2351/1.1585079
  22. Namiot V. A. and Shchurova L. Yu., On the generation of electromagnetic waves in the terahertz frequency range. Phys. Lett. A, 375 (28–29), 2759–2766 (2011). doi: 10.1016/j.physleta.2011.05.061
  23. Shchurova L. Y, Namiot V.A., and Sarkisyan D. R. A compact source of terahertz radiation based on interaction of electrons in a quantum well with an electromagnetic wave of a corrugated waveguide. Biophysics, 60 (4), 647–655 (2015). doi: 10.1134/S0006350915040211
  24. Shchurova L. and Namiot V. A compact source of terahertz radiation based on an open corrugated waveguide. In: Advances in Condensed-Matter and Materials Physics Rudimentary Research to Topical Technologyon, Ed. by J. Thirumalai (IntechOpen, London, 2020), pp. 145–159. doi: 10.5772/intechopen.89692L
  25. Полуэктов Н. П. и Царьгородцев Ю. П. Экспериментальная технологическая установка с СВЧ. Приборы и техника эксперимента, № 4, 150 (1996).
  26. Liu K., Yang L., Wang M., and Yang S. Performance optimization of magnetostrictive guided wave sensor based on waveguide wire. AIP Advances, 9, 085216 (2019). doi: 10.1063/1.5119935
  27. Bolotovskii B. M. and Serov A. V. Special features of motion of particles in an electromagnetic wave. Phys. Usp. 46 (6) 645–655 (2003). doi: 10.1070/PU2003v046n06ABEH001349
  28. Андреев С. Н., Макаров В. П. и Рухадзе А. А. Средние силы, действующие на вещество в сильных лазерных п олях. Вопросы атомной науки и техники, 68, 240–244 (2010).
  29. Shin Y.-M., Baig A., Barnett L. R. , Tsai W. C., and Luhmann N. C. System design analysis of a 0.22-THz sheetbeam traveling-wave tube amplifier. IEEE Trans. Electron Devices, 59 (1), 234 (2012).
  30. Zhang L., Jiang Y., Lei W., Hu P., Guo J., Song R., Tang X., Ma G., Chen H., and Wei Y. A piecewise sine waveguide for terahertz traveling wave tube. Sci. Rep., 12, 10449 (2022). doi: 10.1038/s41598-022-14587-y
  31. Mineo M. and Paoloni C. Corrugated rectangular waveguide tunable backward wave oscillator for terahertz applications. IEEE Trans. Electron Devices, 57 (6), 1481–1484 (2010). doi: 10.1109/TED.2010.2045678
  32. Губанов В. А., Кострикин А. В. и Садовников А. В. Исследование распространения спиновых волн в системе гофрированный волновод – планарный волновод при изменении параметров модуляции. Физика твердого тела, 65 (7), 1171–1175 (2023). doi: 10.21883/FTT.2023.07.55840.43H

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».