Normalization of Ca2+ Homeostasis Does not Lead to Correction of Intracellular pH in Hippocampal Culture Neurons under the Influence of Ammonium Ions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In pathologies associated with excitotoxicity and impaired calcium homeostasis, hyperexcitation of neurons is often observed, including during ischemic stroke, hyperammonemia, and neurodegenerative diseases. In the case of long-term sustained depolarization, this hyperactivity disrupts many processes, including the energy balance of ATP, and can lead to cell death. These reactions are often accompanied by prolonged acidification of the cytosol. It affects the activity of a large number of ion channels dependent on intracellular pH, other molecular objects that regulate the concentration of [Ca2+], and other ions in the cell, as well as the membrane potential. Such processes may additionally lead to hyperexcitation and disruption of ion homeostasis. Understanding the relationship between [Ca2+] and pH, is important for the development of methods to eliminate these dysfunctions. In particular, it remains unclear whether correction of Ca2+ homeostasis entails normalization of pH. In this work, it was shown that the elimination of hyperexcitation manifestations, namely, the ultra-high frequency of [Ca2+] pulses and the elevated level of basal [Ca2+], by using the dopamine D2-like receptor (D2-like) agonist PD-168077 (10 μM) or the α2-adrenergic receptor agonist guanfacine (10 μM) does not lead to a noticeable correction of pH, in hippocampal neurons and astrocytes. Thus, to eliminate the effects of hyperexcitation, pH regulation is a separate task, independent of approaches to normalize calcium homeostasis.

About the authors

A. I Sergeev

Institute of Cell Biophysics, Russian Academy of Sciences

Email: sergeev.bio@gmail.com
Pushchino, Russia

P. V Nekrasov

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Russia

References

  1. Kuo S. W., Jiang M., and Heckman C. Potential involvement of intracellular pH in a mouse model of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener., 15 (1–2), 151–153 (2014). doi: 10.3109/21678421.2013.850096
  2. Verma M., Lizama B. N., and Chu C. T. Excitotoxicity, calcium and mitochondria: a triad in synaptic neurodegeneration. Transl. Neurodegener., 11 (1), 3 (2022). doi: 10.1186/s40035-021-00278-7
  3. Mehta A., Prabhakar M., Kumar P., Deshmukh R., and Sharma P. L. Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur. J. Pharmacol., 698 (1–3), 6–18 (2013). doi: 10.1016/j.ejphar.2012.10.032
  4. Felipo V. Contribution of altered signal transduction associated to glutamate receptors in brain to the neurological alterations of hepatic encephalopathy. World J. Gastroenterol., 12 (48), 7737–7743 (2006). doi: 10.3748/wjg.v12.i48.7737
  5. Rodrigo R., Cauli O., Boix J., ElMili N., Agusti A., and Felipo V. Role of NMDA receptors in acute liver failure and ammonia toxicity: therapeutical implications. Neurochem. Int., 55 (1–3), 113–118 (2009). doi: 10.1016/j.neuint.2009.01.007
  6. Schoknecht K., Baeza-Lehnert F., Hirrlinger J., Dreier J. P., and Eilers J. Spreading depolarizations exhaust neuronal ATP in a model of cerebral ischemia. Proc. Natl. Acad. Sci. USA, 122 (19), e2415358122 (2025). doi: 10.1073/pnas.2415358122
  7. Leng T., Shi Y., Xiong Z. G., and Sun D. Proton-sensitive cation channels and ion exchangers in ischemic brain injury: new therapeutic targets for stroke? Prog. Neurobiol., 115, 189–209 (2014). doi: 10.1016/j.pneurobio.2013.12.008
  8. McIntosh T. K., Faden A. I., Bendall M. R., and Vink R. Traumatic brain injury in the rat: alterations in brain lactate and pH as characterized by 1H and 31P nuclear magnetic resonance. J. Neurochem., 49 (5), 1530–1540 (1987). doi: 10.1111/j.1471–4159
  9. Mabe H., Blomqvist P., and Siesjö B. K. Intracellular pH in the brain following transient ischemia. J. Cereb. Blood Flow Metab., 3 (1), 109–114 (1983). doi: 10.1038/jcbfm
  10. Brooks K. J., Kauppinen R. A., Williams S. R., Bachelard H. S., Bates T. E., and Gadian D. G. Ammonia causes a drop in intracellular pH in metabolizing cortical brain slices. A [31P] and [1H] nuclear magnetic resonance study. Neuroscience, 33 (1), 185–192 (1989). doi: 10.1016/0306-4522(89)90320-5
  11. Kelly T. and Rose C. R. Ammonium influx pathways into astrocytes and neurones of hippocampal slices. J. Neurochem., 115 (5), 1123–1136 (2010). doi: 10.1111/j.1471–4159.2010.07009.x
  12. Wang G. J., Randall R. D., and Thayer S. A. Glutamate-induced intracellular acidification of cultured hippocampal neurons demonstrates altered energy metabolism resulting from Ca2+ loads. J. Neurophysiol., 72 (6), 2563–2569 (1994). doi: 10.1152/jn.1994.72.6.2563
  13. Dynnik V. V., Kononov A. V., Sergeev A. I., Teplov I. Y., Tankanag A. V., and Zinchenko V. P. To break or to brake neuronal network accelerated by ammonium ions? PLoS One, 10 (7), e0134145 (2015). doi: 10.1371/journal.pone.0134145
  14. Brewer G. J., Torricelli J. R., Evege E. K., and Price P. J. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res., 35 (5), 567–576 (1993). doi: 10.1002/jnr.490350513
  15. Magg T. and Albert M. H. Tracking cell proliferation using the far red fluorescent dye SNARF-1. Cytometry B Clin. Cytom., 72 (6), 458–464 (2007). doi: 10.1002/cyto.b.20180
  16. Buckler K. J. and Vaughan-Jones R. D. Application of a new pH-sensitive fluoroprobe (carboxy-SNARF-1) for intracellular pH measurement in small, isolated cells. Pflugers Arch., 417 (2), 234–239 (1990). doi: 10.1007/BF00370705
  17. Zinchenko V. P., Turovsky E. A., Turrovskaya M. V., Berezhnov A. V., Sergeev A. I., and Dynnik V. V. NAD causes dissociation of neural networks into subpopulations of neurons by inhibiting the network synchronous hyperactivity evoked by ammonium ions. Biochemistry (Moscow), Suppl. Ser. A, 10, 118–125 (2016). doi: 10.1134/S1990747816020124
  18. Berezhnov A. V., Fedotova E. I., Sergeev A. I., Teplov I. Y., and Abramov A. Y. Dopamine controls neuronal spontaneous calcium oscillations via astrocytic signal. Cell Calcium, 94, 102359 (2021). doi: 10.1016/j.ceca.2021.102359
  19. Berezhnov A. V., Soutar M. P., Fedotova E. I., Frolova M. S., Plun-Favreau H., Zinchenko V. P., and Abramov A. Y. Intracellular pH Modulates Autophagy and Mitophagy. J. Biol. Chem., 291 (16), 8701–8708 (2016). doi: 10.1074/jbc.M115.691774
  20. Сергеев А. И. Нарушение кальциевого гомеостаза и его коррекция при гипервозбуждении нейронов культуры клеток гиппокампа. Дис. ... канд. биол. наук (ИБК РАН, Пущино, 2017).
  21. Limón I. D., Angulo-Cruz I., Sánchez-Abdon L., and Patricio-Martínez A. Disturbance of the glutamate-glutamine cycle, secondary to hepatic damage, compromises memory function. Front. Neurosci., 15, 578922 (2021). doi: 10.3389/fnins.2021.578922
  22. Kosenkov A. M., Gaidin S. G., Sergeev A. I., Teplov I. Y., and Zinchenko V. P. Fast changes of NMDA and AMPA receptor activity under acute hyperammonemia in vitro. Neurosci. Lett., 686, 80–86 (2018). doi: 10.1016/j.neulet.2018.08.054
  23. Raley-Susman K. M., Cragoe E. J., Sapolsky R. M., and Kopito R. R. Regulation of intracellular pH in cultured hippocampal neurons by an amiloride-insensitive Na+/H+ exchanger, J. Biol. Chem., 266 (5), 2739–2745 (1991). doi: 10.1016/S0021-9258(18)49907-3
  24. McClure M. M., Barch D. M., Romero M. J., Minzenberg M. J., Triebwasser J., Harvey P. D., and Siever L. J. The effects of guanfacine on context processing abnormalities in schizotypal personality disorder. Biol. Psychiatry, 61 (10), 1157–1160 (2007). doi: 10.1016/j.biopsych.2006.06.034
  25. Swartz B. E., McDonald C. R., Patel A., and Torgersen D. The effects of guanfacine on working memory performance in patients with localization-related epilepsy and healthy controls. Clin. Neuropharmacol., 31 (5), 251–260 (2008). doi: 10.1097/WNF.0b013e3181633461
  26. Scahill L., Chappell P. B., Kim Y. S., Schultz R. T., Katsovich L., Shepherd E., Arnsten A. F., Cohen D. J., and Leckman J. F. A placebo-controlled study of guanfacine in the treatment of children with tic disorders and attention deficit hyperactivity disorder. Am. J. Psychiatry, 158 (7), 1067–1074 (2001). doi: 10.1176/appi.ajp.158.7.1067
  27. Magen I., Avraham Y., Ackerman Z., Vorobiev L., Mechoulam R., and Berry E. M. Cannabidiol ameliorates cognitive and motor impairments in mice with bile duct ligation. J. Hepatol., 51 (3), 528–534 (2009). doi: 10.1016/j.jhep.2009.04.021
  28. Baldassarre M., Giannone F. A., Napoli L., Tovoli A., Ricci C. S., Tufoni M., and Caraceni P. The endocannabinoid system in advanced liver cirrhosis: pathophysiological implication and future perspectives. Liver Int., 33 (9), 1298–1308 (2013). doi: 10.1111/liv.12263
  29. Avraham Y., Grigoriadis N., Poutahidis T., Vorobiev L., Magen I., Ilan Y., Mechoulam R., and Berry E. Cannabidiol improves brain and liver function in a fulminant hepatic failure-induced model of hepatic encephalopathy in mice. Br. J. Pharmacol., 162 (7), 1650–1658 (2011). doi: 10.1111/j.1476-5381.2010.01179.x
  30. Wang X., Wu J., Li L., Chen F., Wang R., and Jiang C. Hypercapnic acidosis activates KATP channels in vascular smooth muscles. Circ. Res., 92 (11), 1225–1232 (2003). doi: 10.1161/01.RES.0000075601.95738.6D
  31. Morton M. J., Abohamed A., Sivaprasadarao A., and Hunter M. pH sensing in the two-pore domain K+ channel, TASK2. Proc. Natl. Acad. Sci. USA, 102 (44), 16102–16106 (2005). doi: 10.1073/pnas.0506870102
  32. Zhu G., Chanchevalap S., Cui N., and Jiang C. Effects of intra- and extracellular acidifications on single channel Kir2.3 currents. J. Physiol., 516 (Pt 3), 699–710 (1999). doi: 10.1111/j.1469-7793.1999.0699u.x
  33. Sato R. and Koumi S. Modulation of the delayed rectifier potassium channel gating in guinea-pig ventricular myocytes by intracellular acidification. Nihon Ika Daigaku Zasshi, 64 (1), 71–73 (1997). doi: 10.1272/jnms1923.64.71
  34. Teplov I. Y., Zinchenko V. P., Kosenkov A. M., Gaidin S. G., Nenov M. N., and Sergeev A. I. Involvement of NMDA and GABA(A) receptors in modulation of spontaneous activity in hippocampal culture: Interrelations between burst firing and intracellular calcium signal. Biochem. Biophys. Res. Commun., 553, 99–106 (2021). doi: 10.1016/j.bbrc.2021.02.149
  35. Surges R., Volynski K. E., and Walker M. C. Is levetiracetam different from other antiepileptic drugs? Levetiracetam and its cellular mechanism of action in epilepsy revisited. Ther. Adv. Neurol. Disord., 1 (1), 13–24 (2008). doi: 10.1177/1756285608094212
  36. Ribeiro C. A., Hickmann F. H., and Wajner M. Neurochemical evidence that 3-methylglutaric acid inhibits synaptic Na+,K+-ATPase activity probably through oxidative damage in brain cortex of young rats. Int. J. Dev. Neurosci., 29 (1), 1–7 (2011). doi: 10.1016/j.ijdevneu.2010.10.007
  37. Renuka M., Vijayakumar N., and Ramakrishnan A. Chrysin, a flavonoid attenuates histological changes of hyperammonemic rats: A dose dependent study. Biomed. Pharmacother., 82, 345–354 (2016). doi: 10.1016/j.biopha.2016.05.013
  38. Ramakrishnan A., Vijayakumar N., and Renuka M. Naringin regulates glutamate-nitric oxide cGMP pathway in ammonium chloride induced neurotoxicity. Biomed. Pharmacother., 84, 1717–1726 (2016). doi: 10.1016/j.biopha.2016.10.080

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).