НОРМАЛИЗАЦИЯ Са2+-ГОМЕОСТАЗА НЕ ПРИВОДИТ К КОРРЕКЦИИ ВНУТРИКЛЕТОЧНОГО рН В НЕЙРОНАХ КУЛЬТУРЫ ГИППОКАМПА НА ФОНЕ ВОЗДЕЙСТВИЯ ИОНА АММОНИЯ
- Авторы: Сергеев А.И1, Некрасов П.В2
-
Учреждения:
- Институт биофизики клетки — обособленное подразделение ФИЦ «Пущинский научный центр биологических исследований РАН»
- Институт теоретической и экспериментальной биофизики РАН
- Выпуск: Том 70, № 6 (2025)
- Страницы: 1105-1114
- Раздел: Биофизика клетки
- URL: https://journals.rcsi.science/0006-3029/article/view/354272
- DOI: https://doi.org/10.31857/S0006302925060071
- ID: 354272
Цитировать
Аннотация
Об авторах
А. И Сергеев
Институт биофизики клетки — обособленное подразделение ФИЦ «Пущинский научный центр биологических исследований РАН»
Email: sergeev.bio@gmail.com
Пущино, Россия
П. В Некрасов
Институт теоретической и экспериментальной биофизики РАНПущино, Россия
Список литературы
- Kuo S. W., Jiang M., and Heckman C. Potential involvement of intracellular pH in a mouse model of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener., 15 (1–2), 151–153 (2014). doi: 10.3109/21678421.2013.850096
- Verma M., Lizama B. N., and Chu C. T. Excitotoxicity, calcium and mitochondria: a triad in synaptic neurodegeneration. Transl. Neurodegener., 11 (1), 3 (2022). doi: 10.1186/s40035-021-00278-7
- Mehta A., Prabhakar M., Kumar P., Deshmukh R., and Sharma P. L. Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur. J. Pharmacol., 698 (1–3), 6–18 (2013). doi: 10.1016/j.ejphar.2012.10.032
- Felipo V. Contribution of altered signal transduction associated to glutamate receptors in brain to the neurological alterations of hepatic encephalopathy. World J. Gastroenterol., 12 (48), 7737–7743 (2006). doi: 10.3748/wjg.v12.i48.7737
- Rodrigo R., Cauli O., Boix J., ElMili N., Agusti A., and Felipo V. Role of NMDA receptors in acute liver failure and ammonia toxicity: therapeutical implications. Neurochem. Int., 55 (1–3), 113–118 (2009). doi: 10.1016/j.neuint.2009.01.007
- Schoknecht K., Baeza-Lehnert F., Hirrlinger J., Dreier J. P., and Eilers J. Spreading depolarizations exhaust neuronal ATP in a model of cerebral ischemia. Proc. Natl. Acad. Sci. USA, 122 (19), e2415358122 (2025). doi: 10.1073/pnas.2415358122
- Leng T., Shi Y., Xiong Z. G., and Sun D. Proton-sensitive cation channels and ion exchangers in ischemic brain injury: new therapeutic targets for stroke? Prog. Neurobiol., 115, 189–209 (2014). doi: 10.1016/j.pneurobio.2013.12.008
- McIntosh T. K., Faden A. I., Bendall M. R., and Vink R. Traumatic brain injury in the rat: alterations in brain lactate and pH as characterized by 1H and 31P nuclear magnetic resonance. J. Neurochem., 49 (5), 1530–1540 (1987). doi: 10.1111/j.1471–4159
- Mabe H., Blomqvist P., and Siesjö B. K. Intracellular pH in the brain following transient ischemia. J. Cereb. Blood Flow Metab., 3 (1), 109–114 (1983). doi: 10.1038/jcbfm
- Brooks K. J., Kauppinen R. A., Williams S. R., Bachelard H. S., Bates T. E., and Gadian D. G. Ammonia causes a drop in intracellular pH in metabolizing cortical brain slices. A [31P] and [1H] nuclear magnetic resonance study. Neuroscience, 33 (1), 185–192 (1989). doi: 10.1016/0306-4522(89)90320-5
- Kelly T. and Rose C. R. Ammonium influx pathways into astrocytes and neurones of hippocampal slices. J. Neurochem., 115 (5), 1123–1136 (2010). doi: 10.1111/j.1471–4159.2010.07009.x
- Wang G. J., Randall R. D., and Thayer S. A. Glutamate-induced intracellular acidification of cultured hippocampal neurons demonstrates altered energy metabolism resulting from Ca2+ loads. J. Neurophysiol., 72 (6), 2563–2569 (1994). doi: 10.1152/jn.1994.72.6.2563
- Dynnik V. V., Kononov A. V., Sergeev A. I., Teplov I. Y., Tankanag A. V., and Zinchenko V. P. To break or to brake neuronal network accelerated by ammonium ions? PLoS One, 10 (7), e0134145 (2015). doi: 10.1371/journal.pone.0134145
- Brewer G. J., Torricelli J. R., Evege E. K., and Price P. J. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res., 35 (5), 567–576 (1993). doi: 10.1002/jnr.490350513
- Magg T. and Albert M. H. Tracking cell proliferation using the far red fluorescent dye SNARF-1. Cytometry B Clin. Cytom., 72 (6), 458–464 (2007). doi: 10.1002/cyto.b.20180
- Buckler K. J. and Vaughan-Jones R. D. Application of a new pH-sensitive fluoroprobe (carboxy-SNARF-1) for intracellular pH measurement in small, isolated cells. Pflugers Arch., 417 (2), 234–239 (1990). doi: 10.1007/BF00370705
- Zinchenko V. P., Turovsky E. A., Turrovskaya M. V., Berezhnov A. V., Sergeev A. I., and Dynnik V. V. NAD causes dissociation of neural networks into subpopulations of neurons by inhibiting the network synchronous hyperactivity evoked by ammonium ions. Biochemistry (Moscow), Suppl. Ser. A, 10, 118–125 (2016). doi: 10.1134/S1990747816020124
- Berezhnov A. V., Fedotova E. I., Sergeev A. I., Teplov I. Y., and Abramov A. Y. Dopamine controls neuronal spontaneous calcium oscillations via astrocytic signal. Cell Calcium, 94, 102359 (2021). doi: 10.1016/j.ceca.2021.102359
- Berezhnov A. V., Soutar M. P., Fedotova E. I., Frolova M. S., Plun-Favreau H., Zinchenko V. P., and Abramov A. Y. Intracellular pH Modulates Autophagy and Mitophagy. J. Biol. Chem., 291 (16), 8701–8708 (2016). doi: 10.1074/jbc.M115.691774
- Сергеев А. И. Нарушение кальциевого гомеостаза и его коррекция при гипервозбуждении нейронов культуры клеток гиппокампа. Дис. ... канд. биол. наук (ИБК РАН, Пущино, 2017).
- Limón I. D., Angulo-Cruz I., Sánchez-Abdon L., and Patricio-Martínez A. Disturbance of the glutamate-glutamine cycle, secondary to hepatic damage, compromises memory function. Front. Neurosci., 15, 578922 (2021). doi: 10.3389/fnins.2021.578922
- Kosenkov A. M., Gaidin S. G., Sergeev A. I., Teplov I. Y., and Zinchenko V. P. Fast changes of NMDA and AMPA receptor activity under acute hyperammonemia in vitro. Neurosci. Lett., 686, 80–86 (2018). doi: 10.1016/j.neulet.2018.08.054
- Raley-Susman K. M., Cragoe E. J., Sapolsky R. M., and Kopito R. R. Regulation of intracellular pH in cultured hippocampal neurons by an amiloride-insensitive Na+/H+ exchanger, J. Biol. Chem., 266 (5), 2739–2745 (1991). doi: 10.1016/S0021-9258(18)49907-3
- McClure M. M., Barch D. M., Romero M. J., Minzenberg M. J., Triebwasser J., Harvey P. D., and Siever L. J. The effects of guanfacine on context processing abnormalities in schizotypal personality disorder. Biol. Psychiatry, 61 (10), 1157–1160 (2007). doi: 10.1016/j.biopsych.2006.06.034
- Swartz B. E., McDonald C. R., Patel A., and Torgersen D. The effects of guanfacine on working memory performance in patients with localization-related epilepsy and healthy controls. Clin. Neuropharmacol., 31 (5), 251–260 (2008). doi: 10.1097/WNF.0b013e3181633461
- Scahill L., Chappell P. B., Kim Y. S., Schultz R. T., Katsovich L., Shepherd E., Arnsten A. F., Cohen D. J., and Leckman J. F. A placebo-controlled study of guanfacine in the treatment of children with tic disorders and attention deficit hyperactivity disorder. Am. J. Psychiatry, 158 (7), 1067–1074 (2001). doi: 10.1176/appi.ajp.158.7.1067
- Magen I., Avraham Y., Ackerman Z., Vorobiev L., Mechoulam R., and Berry E. M. Cannabidiol ameliorates cognitive and motor impairments in mice with bile duct ligation. J. Hepatol., 51 (3), 528–534 (2009). doi: 10.1016/j.jhep.2009.04.021
- Baldassarre M., Giannone F. A., Napoli L., Tovoli A., Ricci C. S., Tufoni M., and Caraceni P. The endocannabinoid system in advanced liver cirrhosis: pathophysiological implication and future perspectives. Liver Int., 33 (9), 1298–1308 (2013). doi: 10.1111/liv.12263
- Avraham Y., Grigoriadis N., Poutahidis T., Vorobiev L., Magen I., Ilan Y., Mechoulam R., and Berry E. Cannabidiol improves brain and liver function in a fulminant hepatic failure-induced model of hepatic encephalopathy in mice. Br. J. Pharmacol., 162 (7), 1650–1658 (2011). doi: 10.1111/j.1476-5381.2010.01179.x
- Wang X., Wu J., Li L., Chen F., Wang R., and Jiang C. Hypercapnic acidosis activates KATP channels in vascular smooth muscles. Circ. Res., 92 (11), 1225–1232 (2003). doi: 10.1161/01.RES.0000075601.95738.6D
- Morton M. J., Abohamed A., Sivaprasadarao A., and Hunter M. pH sensing in the two-pore domain K+ channel, TASK2. Proc. Natl. Acad. Sci. USA, 102 (44), 16102–16106 (2005). doi: 10.1073/pnas.0506870102
- Zhu G., Chanchevalap S., Cui N., and Jiang C. Effects of intra- and extracellular acidifications on single channel Kir2.3 currents. J. Physiol., 516 (Pt 3), 699–710 (1999). doi: 10.1111/j.1469-7793.1999.0699u.x
- Sato R. and Koumi S. Modulation of the delayed rectifier potassium channel gating in guinea-pig ventricular myocytes by intracellular acidification. Nihon Ika Daigaku Zasshi, 64 (1), 71–73 (1997). doi: 10.1272/jnms1923.64.71
- Teplov I. Y., Zinchenko V. P., Kosenkov A. M., Gaidin S. G., Nenov M. N., and Sergeev A. I. Involvement of NMDA and GABA(A) receptors in modulation of spontaneous activity in hippocampal culture: Interrelations between burst firing and intracellular calcium signal. Biochem. Biophys. Res. Commun., 553, 99–106 (2021). doi: 10.1016/j.bbrc.2021.02.149
- Surges R., Volynski K. E., and Walker M. C. Is levetiracetam different from other antiepileptic drugs? Levetiracetam and its cellular mechanism of action in epilepsy revisited. Ther. Adv. Neurol. Disord., 1 (1), 13–24 (2008). doi: 10.1177/1756285608094212
- Ribeiro C. A., Hickmann F. H., and Wajner M. Neurochemical evidence that 3-methylglutaric acid inhibits synaptic Na+,K+-ATPase activity probably through oxidative damage in brain cortex of young rats. Int. J. Dev. Neurosci., 29 (1), 1–7 (2011). doi: 10.1016/j.ijdevneu.2010.10.007
- Renuka M., Vijayakumar N., and Ramakrishnan A. Chrysin, a flavonoid attenuates histological changes of hyperammonemic rats: A dose dependent study. Biomed. Pharmacother., 82, 345–354 (2016). doi: 10.1016/j.biopha.2016.05.013
- Ramakrishnan A., Vijayakumar N., and Renuka M. Naringin regulates glutamate-nitric oxide cGMP pathway in ammonium chloride induced neurotoxicity. Biomed. Pharmacother., 84, 1717–1726 (2016). doi: 10.1016/j.biopha.2016.10.080
Дополнительные файлы


