Results of FLASH Irradiation of Mice in vivo with High-Energy Protons

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The FLASH effect of high-energy (660 MeV) proton irradiation using the Phasotron accelerator with the capacity of delivering dose rates of 80 Gy/s has been studied and compared to the effect after exposure to proton radiation at a conventional dose rate of 3 Gy/min. After FLASH and conventional dose-rate irradiation with doses of 1.0 and 1.5 Gy, the induction of cytogenetic damage to bone marrow cells and the state of lymphoid organs (thymus and spleen) were estimated; at doses of 7.0 and 8.0 Gy, the survival rate after total irradiation of mice in vivo was analyzed; and at doses of 40 and 60 Gy, the tumor growth rate was determined after irradiation ex vivo. It has been shown that irradiation of animals using the FLASH mode at a dose of 1.5 Gy protects the proliferative activity of the spleen and also leads to a decrease in cytogenetic injuries in bone marrow erythrocytes, based on the micronucleus test, as compared to the conventional irradiation at a dose of 1.5 Gy; thus, the FLASH effect has lower toxicity compared to conventional radiation. However, irradiation of mice, the FLASH effect which delivers high doses (7.0 and 8.0 Gy) of radiation, leads to earlier death of animals compared to those exposed to conventional radiation. Only after FLASH irradiation of a suspension of Ehrlich ascites carcinoma at a dose of 40 Gy, a tumor node with further growth was formed; no tumors were formed in all other groups.

About the authors

A. E Shemyakov

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences; Physical-Technical Center of the Physical Institute, Russian Academy of Sciences

Email: alshemyakov@yandex.ru
Pushchino, Russia; Protvino, Russia

A. R Dyukina

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Russia

S. I Zaichkina

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Russia

A. V Agapov

Joint Institute for Nuclear Research

Dubna, Russia

G. V Mitsyn

Joint Institute for Nuclear Research

Dubna, Russia

K. N Shipulin

Joint Institute for Nuclear Research

Dubna, Russia

References

  1. Diffenderfer E., Verginadis I., Kim M., Shoniyozov K., Velalopoulou A., Goia D., Putt M., Hagan S., Avery S., Teo K., Zou W., Lin A., Swisher-McClure S., Koch C., Kennedy A. R., Minn A., Maity A., Busch T. M., Dong L., Koumenis C., Metz J., and Cengel K. A. Design, implementation, and in vivo validation of a novel proton flash radiation therapy system. Int. J. Radiat. Oncol. Biol. Phys., 106 (2), 440–448 (2020). doi: 10.1016/j.ijrobp.2019.10.049
  2. Favaudon V., Caplier L., Monceau V., Pouzoulet F., Sayarath M., Fouillade C., Poupon M. F., Brito I., Hupe P., Bourhis J., Hall J., Fontaine J. J., and Vozenin M. C. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci. Transl. Med., 6 (245), 245ra93 (2014). doi: 10.1126/scitranslmed.3008973
  3. Soto L., Casey K., Wang J., Blaney A., Manjappa R., Breitkreutz D., Skinner L., Dutt S., Ko R., Bush K., Yu A., Melemenidis S., Strober S., Englemann E., Maxim P., Graves E., and Loo B. FLASH irradiation results in reduced severe skin toxicity compared to conventionaldose-rate irradiation. Radiat. Res., 194 (6), 618–624 (2020). doi: 10.1667/RADE-20-00090
  4. Spitz D., Buettner G., Petronek M., St-Aubin J., Flynn R., Waldron T., and Limoli C. An integrated physico-chemical approach for explaining the differential impact of FLASH versus conventional dose rate irradiation on cancer and normal tissue responses. Radiother. Oncol., 139, 23–27 (2019). doi: 10.1016/j.radonc.2019.03.028
  5. Simmons D., Lartey F., Schuler E., Rafat M., King G., Kim A., Ko R., Semaan S., Gonzalez S., Jenkins M., Pradhan P., Shih Z., Wang J., von Eyben R., Graves E., Maxim P., Longo F., and Loo B. Jr. Reduced cognitive deficits after FLASH irradiation of whole mouse brain are associated with less hippocampal dendritic spine loss and neuroinflammation. Radiother. Oncol., 139, 4–10 (2019). doi: 10.1016/j.radonc.2019.06.006
  6. Rama N., Saha T., Shukla S., Goda C., Milewski D., Mascia A., Vatner R., Sengupta D., Katsis A., Abel E., Girdhani S., Miyazaki M., Rodriguez A., Ku A., Dua R., Parry R., and Kalin T. Improved tumor control through t-cell infiltration modulated by ultra-high dose rate proton flash using a clinical pencil beam scanning proton system. Int. J. Radiat. Oncol. Biol. Phys., 105, S164–S165 (2019). doi: 10.1016/j.ijrobp.2019.06.187
  7. Агапов А. В., Грицкова Е. А., Густов С. А., Мицын Г. В., Молоканов А. Г., Хасенова И., Швидкий С. В. и Шипулин К. Н. Формирование высокоинтенсивного пучка протонов для исследования флэш-эффекта в лучевой терапии. Медицинская физика, 4, 29–39 (2023). doi: 10.52775/1810-200X-2023-100-4-29-39
  8. Директива 2010/63/eu Европейского парламента и Совета Европейского союза. URL.: https://ruslasa.ru/wp-content/uploads/2017/06/Directive_201063_rus.pdf (дата обращения: 12.03.2024 г.).
  9. Krupina K., Goginashvili A., and Cleveland D. Causes and consequences of micronuclei. Curr. Opin. Cell Biol., 70, 91–99 (2021). doi: 10.1016/j.ceb.2021.01.004.
  10. Hayashi M. The micronucleus test – most widely used in vivo genotoxicity test. Genes and Environ., 38, 18 (2016). doi: 10.1186/s41021-016-0044-x
  11. Балакин В., Розанова О., Смирнова Е., Белякова Т., Стрельникова Н., Смирнов А. и Шемяков А. Индукция роста солидной формы асцитной карциномы эрлиха у мышей после облучения протонами опухолевых клеток ex vivo. Докл. РАН. Науки о жизни. 511 (1), 360–364 (2023). doi: 10.31857/S2686738923600152
  12. Балакин В., Розанова О., Смирнова Е., Белякова Т., Шемяков А., Заичкина С., Сорокина С. и Дюкина А. Действие низких и средних доз тонкого сканирующего пучка протонов на органы кроветворения при тотальном облучении мышей. Докл. РАН. Науки о жизни. 494 (1), 458–462 (2020). doi: 10.31857/S2686738920050042.
  13. Lin B., Gao F., Yang Y., Wu D., Zhang Y., Feng G., Dai T., and Du X. FLASH radiotherapy: history and future. Front. Oncol., 11, 644400 (2021). doi: 10.3389/fonc.2021.644400.
  14. Hughes J. and Parsons J. FLASH radiotherapy: current knowledge and future insights using proton-beam therapy. Int. J. Mol. Sci., 21, 6492 (2020). doi: 10.3390/ijms21186492.
  15. Beyreuther E., Brand M., Hans S., Hideghety K., Karsch L., Lebmann E., Schurer M., Szabo E., and Pawelke J. Feasibility of proton FLASH effect tested by zebrafish embryo irradiation. Radiother. Oncol., 139, 46–50 (2019). doi: 10.1016/j.radonc.2019.06.024.
  16. Zhang Q., Cascio E., Li C., Yang Q., Gerweck L., Huang P., Gottschalk B., Flanz J., and Schuemann J. FLASH investigations using protons: design of delivery system, preclinical setup and confirmation of FLASH effect with protons in animal systems. Radiat. Res., 194 (6), 656–664 (2020). doi: 10.1667/RADE-20-00068.1.

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies